Isanotski

MarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarker
2
Legend
Red (Warning)
Orange (Watch)
Yellow (Advisory)
Green (Normal)
Uninstrumented
Community
Webcam
Instrument
Earthquake Magnitude
0 7+
Earthquake Age
Last 2 Hours
Last 2 Days
Last 1 Week


Facts


  • Official Name: Isanotski Peaks
  • Seismically Monitored: Yes
  • Color Code: GREEN
  • Alert Level: NORMAL
  • Elevation: 2470m (8103ft)
  • Latitude: 54.76799
  • Longitude: -163.72904
  • Smithsonian VNum: 311370
  • Pronunciation:
  • Nearby Towns:
    • False Pass 14 mi (23 km) NE
    • Pauloff Harbor 46 mi (75 km) SE
    • Cold Bay 49 mi (79 km) NE
    • King Cove 60 mi (96 km) NE
    • Belkofski 71 mi (114 km) NE

    Distance from Anchorage: 672 mi (1082 km)

Description

From Miller and others (1998) [1] : "Isanotski volcano, located near the eastern end of Unimak Island, is a dissected, snow- and ice-covered stratovolcano with a basal diameter of about 10 km. It is much more deeply eroded than neighboring Shishaldin volcano and lies between Shishaldin and Roundtop along a roughly east-west alignment."

Name Origin

"Isanotski Peaks" was derived from Isanotski Strait, and published by Captain Tebenkov as "Sop[ka] Isanotskaya" meaning "Isanotski Volcano". Isanotski is an Unangam Tunuu name reported by Captain Lutke (1836) as "Issanakh" from the word "isanaq" which, according to R.H. Geoghegan, means "tear (split or strait)" (Orth, 1971). Bergsland (1994) reports the Unangam Tunuu placename as "Iisan."


References Cited

[1] Catalog of the historically active volcanoes of Alaska, 1998

Miller, T. P., McGimsey, R. G., Richter, D. H., Riehle, J. R., Nye, C. J., Yount, M. E., and Dumoulin, J. A., 1998, Catalog of the historically active volcanoes of Alaska: U.S. Geological Survey Open-File Report 98-0582, 104 p.

Reported Activity

Modern Eruptions

Fourpeaked

Fourpeaked Eruption Timeline

In October, 2006, Oliver Holm of Kodiak, AK, phoned the Anchorage Alaska Volcano Observatory office to report seeing a steam and gas plume at or near the summit of Fourpeaked in 1965. Mr. Holm stated that during July or August of 1965 he was setnetting in Chief Cove, at the northern side of Uyak Bay. One day he went up Shelikof Strait, and as they passed Cape Ugat (on the western side of Kodiak Island, he could see a steam plume coming from at or near the summit of Fourpeaked. Mr. Holm reports that the plume was about the same height as the mountain is tall, from his perspective. He did not notice any ash on the snow, or any discoloration in the plume.

Fourpeaked 2006/9

September 17, 2006

From Neal and others (2009): "As fall arrived in Alaska, a phreatic eruption from a volcano not considered active in the Holocene surprised AVO and residents of south-central Alaska. Late on Sunday, September 17, AVO received several citizen telephone reports of a dark plume, fed by what appeared to be two sources, rising from the area near Cape Douglas in lower Cook Inlet. Satellite analysis indicated the source of the plumes to be roughly between closely spaced Douglas and Fourpeaked volcanoes. he drifting cloud produced by these rising plumes persisted throughout the night, reaching a minimum altitude of 20,000 ft (6,100 m based on radar data; Dave Schneider, USGS, written commun., 2006), but drifting only 20 km (12 mi) downwind in an unusually calm and clear atmosphere over south-central Alaska.
The next day, AVO issued an information release mentioning Douglas and Fourpeaked volcanoes, but stated that the exact nature and source of the plumes remained unclear. Neither volcano was monitored seismically, and data from the nearest stations at Katmai and Augustine initially showed nothing dramatic. Deteriorating weather conditions precluded visual observations, but an overflight was scheduled for the first clear window. On the afternoon of September 18, NWS relayed a pilot report of a strong sulfur odor 300 km (190 mi) northwest of Fourpeaked. This was an area likely to be impacted by drift of the September 17 cloud according to PUFF, a volcanic ash tracking model used by AVO (Searcy and others, 1998). Pilots in the Lake Iliamna area on the morning of September 18 also reported a strong sulfur odor, a locality also consistent with likely cloud drift on the 17th.
On September 20, AVO received NWS radar and other satellite data indicating particulate and sulfur-bearing properties in the cloud of September 17, confirming a volcanic source for the event. Based on this, AVO announced Level of Concern Color Code YELLOW for both Douglas and Fourpeaked volcanoes because the source was still uncertain. NEXRAD Doppler radar images from King Salmon showed a particulate cloud in the atmosphere from at least 12:00 p.m. to 9:45 p.m. ADT on September 17. The cloud appeared most energetic (dense) in the first 2 hours (Dave Schneider, USGS written commun., 2006). The bulk of the cloud remained over the point of origin for much of this time, reflecting very calm atmospheric conditions on that day. In addition, Ozone Monitoring Equipment onboard National Aeronautics and Space Administration's (NASA) Aura satellite indicated a pod of SO2 gas in the general vicinity of the eruption plume at 3:00 p.m. ADT. Subsequently, AVO received reports of a very fine-ash dusting at Nonvianuk Lake outlet (110 km or 70 mi west northwest of Fourpeaked) and near Homer (150 km or 90 mi northeast of Fourpeaked). The Nonvianuk report stated, 'We have a heavy sulfuric smell in the air and ash filling the air. The wind here is blowing from the ESE' No samples were retrievable from either location for analysis, but the Nonvianuk report is consistent with PUFF trajectories for a cloud reaching about 20,000 ft (6,100 m) on the afternoon of September 17. Interestingly, multi-spectral satellite images showed no ash signature in the plume on September 17, but AVO analysts did note a thermal anomaly in the vicinity of Fourpeaked (J. Dehn, University of Alaska Fairbanks Geophysical Institute (UAFGI), written commun., 2006). Following the initial event on September 17th, no further particulate clouds were imaged by radar or other means.
An AVO overflight on September 20 confirmed Fourpeaked as the source of volcanic activity. Despite cloud cover of the actual summit, observers in a fixed-wing aircraft circled several distinct vapor clouds rising through the cloud deck above Fourpeaked. Visible patches of discolored snow and ice, especially north and west of the Fourpeaked summit, suggested ash fallout. An AVO helicopter crew later on the same day photographed a lobate, dark debris-flow tongue that had emerged from glacial ice about 3,000 ft (900 m) below the cloud-covered Fourpeaked summit; patchy areas of grey ash on the glacial ice around the summit and to the northeast also were noted. Clouds and fuel limitations prevented any further exploration of the area.
Aerial inspection of the Fourpeaked area on September 23 finally revealed the source of the September 17 plume and continuing fumarolic emissions. Water vapor and volcanic gas billowed from a dramatic, linear series of pits or vents extending about 1,250 m (4,100 ft) across the heavily crevassed and disrupted glacial-ice cover on the north side of the summit region. Multiple sources of vapor from these vents explain the apparent double plume seen in the photograph of September 17. A light dusting of dark material surrounded some of the open pits and several elongate dark stripes leading down slope from at least one vent probably represented remobilized fragmental ejecta mixed with melted ice and snow (or plume condensate). A subtle series of snow-mantled rills leading down slope in the same area indicated several episodes of surface debris or water flow. Stormy weather between September 17-23, produced new snowfall indicating that the ejecta collars and small debris flows observed on September 23 had occurred after the initial event.
AVO scientists visited the area by helicopter on September 24 and 25. The vent area consisted of as many as nine discrete craters or pits, and between three and five were venting steam and volcanic gas at any one time. The vents occurred along a line trending north from the summit basin, inferred to be a glacial cirque, obliquely down-slope across a northwest trending, ice-covered ridge. The bottoms of non-steaming pits were covered with blocks of debris-mantled ice. The upper craters within the Fourpeaked summit cirque had coalesced creating a heavily disrupted ice zone. Most craters were surrounded by fine (?) debris collars that did not extend very far from their rims; there was no evidence of additional, significant ash emission since September 17. FLIR imaging of the pits indicated elevated temperatures as high as 75C (167F); however, these values are minimums due to steam obscuration. A strong sulfur odor was noted downwind of the vents as far as 50 km (30 mi).
The glacial outburst associated with the September 17 event originated from beneath a chaotic ice jumble on the unnamed north-trending glacier at an elevation of about 5,000 ft. This flood apparently scoured a steep-walled canyon more than 100 m (330 ft) deep in places. Blocks of ice up to 5 m (16 ft) or more across had been rafted in a mixture of water and fine-grained to cobble-boulder sized, heterolithologic volcanic debris at least 6 km (4 mi) down slope, where material spilled off the front of the glacier ice and traveled an unknown distance into the Douglas River drainage. Levees of ice, sediment, and rock clasts as much as 10-15 m (33-50 ft) high marked the margins of the deposit. Where traced into the Douglas River drainage about 3-4 km (2-2.5 mi) from the glacier snout, the deposit was thin (about 2 cm or 0.8 in) and fine grained with a maximum clast size of about 1 cm (0.4 in). The field crew flew the length of the Douglas River to Cook Inlet and noted evidence of a flooding event represented by recently emplaced fine-grained gray sediment on beaches and river banks. On the day of observation, there was no evidence of continuing discharge of meltwater or debris down this newly carved drainage system.
AVO scientists collected samples of the fine, gray ash-fall deposit from the September 17 event. Deposits were most impressive west of the vent area where they were estimated to be 1-2 mm (less than 0.1 in) thick. Other flanks of the volcano received a mere dusting (<1 mm); based on these few observations and the outlier reports of extremely light ash fall noted at two distant locations, the fall deposit likely represents well under 1 million cubic m of material. Preliminary petrographic analyses indicate the tephra consists of hydrothermally altered volcanic rock and crystal fragments, notably pyrite, and other accessory minerals (J. Larsen, UAFGI, written commun., 2006).
AVO geologists in the field on September 24-25 also reported loud rumbling sounds associated with sudden bursts of water from the ice-bedrock contact at an elevation of approximately 4,000 ft on the northwest flank of Fourpeaked; these flows lasted several seconds and then disappeared. An overflight of the cliff below these outbursts did not reveal anything unusual, and any relationship between these periodic outbursts of water with the events of September 17 is uncertain.
AVO geologists made further ground-based observations of the deposits and features related to this unrest in mid-October. Close helicopter passes of the vent area on October 14 revealed that several of the original craters had coalesced and the rims of the sheer-walled pits had retreated, enlarging most by perhaps tens of meters. The pit rims were blanketed by fresh snow indicating no additional ash emission of significance since the explosion on September 17. However, intermittent, vigorous fumarolic activity capable of entraining a small amount of locally derived material may have continued and gone undetected between overflights. Field observers saw no sign of large ballistics littering the surface, so any ongoing phreatic emissions were not very energetic. Yellow-stained (most likely sulfur) snow surrounded the upper crater.
Deposits related to the outburst flood into the Douglas River were examined more closely and consisted of gray, soggy, water-saturated, sulfur-smelling silty material containing cobble-sized clasts of dense, altered, volcanic rock and pyrite (and possibly marcasite). Preliminary results from x-ray diffraction and x-ray fluorescence analyses of a non-pyritic material indicate that the volcanic rock composition primarily is dacite, and that the fine fraction also contains minor gypsum and minor smectite (K. Bull, ADGGS, written commun., 2007). Interestingly, near the snout of the glacier impacted by this outburst flood, AVO geologists noted multiple layers of similar, sulfurous, heterolithologic material exposed in the ice stratigraphy, and postulated that these may represent prior (possibly historical in age) debris-flow events captured in the ice.
Eight airborne gas measurements were obtained between September 23 and November 18, 2006. Sulfur dioxide output was steady and high for a non-erupting volcano ranging between 820-2,940 ton/d (Doukas and McGee, 2007). For the same period, CO2 flux was between 340-834 ton/d. In contrast to Augustine Volcano (McGee and others, 2006), H2S output from Fourpeaked remained quite high, between 70-140 ton/d, likely reflecting the dominance of a wet hydrothermal system at this ice-clad volcano. In addition to these onsite, airborne measurements, Ozone Mapping Instrument (OMI) sensors occasionally detected SO2 clouds in the area. Beginning in October, low sun angles prevented good results and AVO stopped receiving reports from the OMI satellite team at the University of Maryland (D. Schneider, USGS, oral commun., 2006).
Seismic activity as recorded on the three new stations installed following the event on September 17 remained relatively low through the end of the year, typically with only a few volcanic earthquakes captured on most days. These three stations augmented coverage by regional seismic station CCDN about 17 km (~11 mi) northeast of Fourpeaked. On October 3, a swarm consisting of tens to hundreds of very small, non-locatable earthquakes occurred in the vicinity of Fourpeaked. A second swarm on November 5-6 occurred within the new Fourpeaked subnet and 75 events were located. Seismicity remained elevated with occasional small swarms of activity (10 located events per day or less) through the end of the year. Small explosion signals also began to be recorded in the spring; these signals may have reflected transient increases in fumarolic emission.
Further analysis of Katmai area seismic stations during the time period of the eruption cloud and opening of vents in the ice revealed a small swarm of earthquakes between 11:48 a.m. and 3:50 p.m. ADT on September 17 (M. West, UAFGI, oral commun., 2006) coincident in time with the onset and development of the plume seen in radar images. The University of Alaska Fairbanks infrasound array also detected a signal at about 20:50 UTC on September 17, likely an explosion source, at a time and location consistent with the plume sighting (S.R. McNutt, UAFGI, oral commun., 2006).
AVO concluded that the unrest at Fourpeaked volcano most likely involved the presence of new magma at fairly shallow (less than a few kilometers) levels, accounting for the seismicity and degassing, and providing a heat and gas source for a phreatic explosion, vigorous phreatic emission of gas and fine particulates, and a glacial outburst of meltwater, glacial ice, and hydrothermally altered debris on September 17.
A shallow, degassing intrusion of fresh magma also would account for the ongoing gas emissions (K. McGee, USGS, oral commun., 2006). The lack of a seismic network at Fourpeaked precludes exact determination of the onset of seismicity that may have been associated with an intrusion. However, the swarm detected on the Katmai network on September 17 likely captured the most vigorous phase of the event, including the onset of phreatic eruption.
Through the remainder of 2006 and into 2007, a variably robust plume of vapor and volcanic gas discharged from the linear chain of pits in the ice. Overflights into mid-November documented minor changes in the pit morphologies, primarily related to coalescence and widening. No further ash emissions of significance were noted, although an increasingly visible coating of a yellow, likely sulfurous deposit stained snow and ice cover around the Fourpeaked summit."

For detailed observations and photographs of this event, pelase see: Neal, C.A., McGimsey, R.G., Dixon, J.P., Manevich, Alexander, and Rybin, Alexander, 2009, 2006 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2008-5214, 102 p., available at pubs.usgs.gov/sir/2008/5214/ .

McGimsey and others (2011) report that throughout the first half of 2007, seismicity, steaming, and gas emissions decreased at Fourpeaked following the 2006 eruption. McGimsey and others (2014) continue the chronology of this event: "Steam and gas emissions were frequently observed in web camera images and during routine gas measurement flights through the first half of 2008, and were visible to an AVO field crew on Augustine Volcano in July 2008 (AVO internal log entries). Activity continued to decrease into, and through 2009.
"Steam plumes were visible in the web camera on February 8, 2009, and during gas measurement flights on June 6, 2009, and November 2, 2009; during the November overflight, no gas was detected (M. Doukas, U.S. Geological Survey, written commun., 2012). As the phreatic activity diminished, the melt holes begam filling with snow and fumarolic activity was observed only from a single vent.
"The seismic and infrasound networks, and the web cam, were serviced in the summer of 2008, and a year later, as the batteries drained, the instruments stopped recording data. On November 18, 2009, prompted by the network outage and inability to assess the level of seismic activity, AVO issued a Volcanic Activity Notice and an Information Release downgrading Fourpeaked from Aviation Color Code GREEN and Volcano Alert Level Normal to UNASSIGNED, thus removing it from the list of seismically monitored volcanoes."

Loading

Fourpeaked 2013/4

April 2013 — May 2013

From Dixon and others(2015): "A minor increase in seismicity at Fourpeaked Volcano in April and May prompted additional analysis of monitoring data by AVO. AVO also received a report in May of steaming near Mount Douglas and Fourpeaked. During 2013, the Aviation Color Code and Volcano Alert Level for Fourpeaked remained at GREEN/NORMAL.
"A ML=4.5 earthquake occurred just west of Fourpeaked at 06:34 UTC (22:34 AKDT) on May 12. The Alaska Earthquake Information Center (AEIC) located this earthquake 15 km (9 mi) west of Fourpeaked and 25 km (16 mi) west-southwest of Mount Douglas at 15 km (9 mi) depth. This earthquake was immediately preceded by two foreshocks. A dozen small earthquakes occurred in this region in the 3 days before the ML=4.5. Another ML=4.5 earthquake occurred near Fourpeaked at 02:33 UTC (18:33 AKDT) on May 14, about 40 hours after the first earthquake. Comparison of the initial waveforms of the earthquake on seismograph station KABU suggests that both earthquakes had the same location and similar focal mechanisms. AVO analysts located 28 earthquakes in the 2 weeks following the second mainshock. It is unknown if this series of earthquakes are volcanic, but no observations of increased volcanic activity were received.
"On May 19, a crew of Alaska Department of Fish and Game biologists reported steaming near Mount Douglas and Fourpeaked. AVO followed up on this report, noting that the lake at Mount Douglas froze over in previous years but did not freeze in 2013, which is likely the cause of the isolated report."

Fourpeaked 1965/7

Fourpeaked 2006/9

Fourpeaked 2013/4

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
1953
1954
1955
1956
1957
1958
1959
1961
1962
1963
1964
1965
1966
1967
1968
1969
1971
1972
1973
1974
1975
1976
1977
1978
1979
1981
1982
1983
1984
1985
1986
1987
1988
1989
1991
1992
1993
1994
1995
1996
1997
1998
1999
2001
2002
2003
2004
2005
2006
2007
2008
2009
2011
2012
2013
2014
2015
2016
2017
2018
2019
2021
2022
2023
2024

5 Event Date(s)

Past Activity Legend:
Eruption
Questionable eruption
Non-eruptive activity


Showing 1 - 20 of 117

Map Images


Map References


Historically active volcanoes of the Aleutian Arc, 2002

Schaefer, Janet, and Nye, C. J., 2002, Historically active volcanoes of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication MP 0123, unpaged, 1 sheet, scale 1:3,000,000. Superceded by Miscellaneous Publication 133: http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=20181

Volcanoes of Alaska, 1998

Nye, C. J., Queen, Katherine, and McCarthy, A. M., 1998, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000, available at http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=7043 .
Hard Copy held by AVO at FBKS - CEC shelf

Revised geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula, 1997

Wilson, F. H., Weber, F. R., Dochat, T. M., Miller, T. P., and Detterman, R. L., 1997, Revised geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula: U.S. Geological Survey Open-File Report 97-0866, 34 p., 1 sheet, scale 1:250,000.

Volcanoes of Alaska, 1995

Alaska Division of Geological & Geophysical Surveys, 1995, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000.

Geothermal resources of the Aleutian Arc, 1993

Motyka, R. J., Liss, S. A., Nye, C. J., and Moorman, M. A., 1993, Geothermal resources of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Professional Report PR 0114, 17 p., 4 sheets, scale 1:1,000,000.
Hard Copy held by AVO at FBKS - CEC shelf

Holocene volcanoes of the Aleutian Arc, Alaska, 1993

March, G. D., 1993, Holocene volcanoes of the Aleutian Arc, Alaska: Alaska Division of Geological & Geophysical Surveys Public-Data File PDF 93-85, unpaged, 1 sheet, scale 1:2,000,000.

Preliminary geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula, 1992

Wilson, F. H., Miller, T. P., and Detterman, R. L., 1992, Preliminary geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula: U.S. Geological Survey Open-File Report 92-0545, 10 p., 1 plate, scale 1:250,000.

Geology and petrology of Shishaldin volcano, Unimak Island, Aleutian Arc, Alaska, 1988

Fournelle, J. H., 1988, Geology and petrology of Shishaldin volcano, Unimak Island, Aleutian Arc, Alaska: The Johns Hopkins University Ph.D. dissertation, 507 p., 2 plates, scale unknown.

Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska, 1986

Luedke, R. G., and Smith, R. L., 1986, Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 1091-F, unpaged, 3 sheets, scale 1:1,000,000.

Reconnaissance geologic map of the Cold Bay and False Pass quadrangles, Alaska, 1978

McLean, H., Engelhardt, C. L., and Howell, D. G., 1978, Reconnaissance geologic map of the Cold Bay and False Pass quadrangles, Alaska: U.S. Geological Survey Open-File Report 78-0323, unpaged, 1 plate.

Geologic reconnaissance of Frosty Peak volcano and vicinity, Alaska, 1961

Waldron, H. H., 1961, Geologic reconnaissance of Frosty Peak volcano and vicinity, Alaska: in Investigations of Alaskan volcanoes, U.S. Geological Survey Bulletin 1028-T, p. 677-708, 1 plate, scale 1:250,000.
full-text PDF 702 KB
plate 79 PDF 1.9 MB
Hard Copy held by AVO at FBKS - CEC shelf

Volcanic activity in the Aleutian Arc, 1950

Coats, R. R., 1950, Volcanic activity in the Aleutian Arc: U.S. Geological Survey Bulletin 0974-B, p. 35-49, 1 sheet, scale 1:5,000,000.
plate 1 PDF 819 KB
full-text PDF 783 KB
Hard Copy held by AVO at FBKS - CEC shelf

Reconnaissance of the gold fields of southern Alaska with some notes on general geology, 1898

Becker, G. F., 1898, Reconnaissance of the gold fields of southern Alaska with some notes on general geology: U.S. Geological Survey Annual Report 0018, p. 1-86, 6 sheets, scale unknown.
full-text PDF 1.5 MB
Hard Copy held by AVO at FBKS - CEC file cabinet

References

Proximity to active volcanoes enhances glacier velocity, 2024

Mallalieu, J., Barr, I.D., Spagnolo, M., Mullan, D.J., Symeonakis, E., Edwards, B.R., and Martin, M.D., 2024, Proximity to active volcanoes enhances glacier velocity: Communications Earth & Environment v. 5, 679. https://doi.org/10.1038/s43247-024-01826-5
Full-text PDF 1.3 MB

Alaska interagency operating plan for volcanic ash episodes, 2022

Alaska Volcano Observatory, National Oceanic and Atmospheric Administration, National Weather Service, Federal Aviation Administration, Department of Defense, United States Coast Guard, Division of Homeland Security and Emergency Management, Alaska Department of Environmental Conservation, and Alaska Department of Health and Social Services (participating agencies), 2022, Alaska interagency operating plan for volcanic ash episodes, 85 p.

Geologic database of information on volcanoes in Alaska (GeoDIVA), 2022

Cameron, C.E., Crass, S.W., and AVO Staff, eds, 2022, Geologic database of information on volcanoes in Alaska (GeoDIVA): Alaska Division of Geologic and Geophysical Surveys Digital Data Series 20, https://doi.org/10.14509/geodiva, https://doi.org/10.14509/30901.

Goals and development of the Alaska Volcano Observatory seismic network and application to forecasting and detecting volcanic eruptions, 2020

Power, J.A., Haney, M.M., Botnick, S.M., Dixon, J.P., Fee, David, Kaufman, A.M., Ketner, D.M., Lyons, J.J., Parker, Tom, Paskievitch, J.F., Read, C.W., Searcy, Cheryl, Stihler, S.D., Tepp, Gabrielle, and Wech, A.G., 2020, Goals and development of the Alaska Volcano Observatory seismic network and application to forecasting and detecting volcanic eruptions: Seismological Research Letters, doi: 10.1785/0220190216 .

Catalog of earthquake parameters and description of seismograph and infrasound stations at Alaskan volcanoes - January 1, 2013, through December 31, 2017, 2019

Dixon, J.P., Stihler S.D., Haney, M.M., Lyons, J.J., Ketner, D.M., Mulliken, K.M., Parker, T., and Power, J.A., 2019, Catalog of earthquake parameters and description of seismograph and infrasound stations at Alaskan volcanoes - January 1, 2013, through December 31, 2017: U.S. Geological Survey Data Series 1115, 92 p., https://doi.org/10.3133/ds1115.

A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska: 1989 to 2018, 2019

Power, J.A., Friberg, P.A., Haney, M.M., Parker, T., Stihler, S.D., and Dixon, J.P., 2019, A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska—1989 to 2018: U.S. Geological Survey Scientific Investigations Report 2019–5037, 17 p., https://doi.org/10.3133/sir20195037.

Alaska Volcano Observatory image database, 2016

Cameron, C.E., and Snedigar, S.F., 2016, Alaska Volcano Observatory image database: Alaska Division of Geological & Geophysical Surveys Digital Data Series 13, https://www.avo.alaska.edu/images/. https://doi.org/10.14509/29689.

Preliminary database of Quaternary vents in Alaska, 2014

Cameron, C.E., and Nye, C.J., 2014, Preliminary database of Quaternary vents in Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 153, 11 p., doi:10.14509/27357 .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012, 2013

Dixon, J.P., Stihler, S.D, Power, J.A., Haney, Matt, Parker, Tom, Searcy, C.K., and Prejean, Stephanie, 2013, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012: U.S. Geological Survey Data Series 789, 84 p., available at http://pubs.usgs.gov/ds/789/ .
full-text pdf 6.5 MB

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011, 2012

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2012, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011: U.S. Geological Survey Data Series 730, 82 p., available online at http://pubs.usgs.gov/ds/730/pdf/ds730.pdf .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010, 2011

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2011, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010: U.S. Geological Survey Data Series 645, 82 p., available online at http://pubs.usgs.gov/ds/645/

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009, 2010

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2010, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009: U.S. Geological Survey Data Series 531, 84 p., available online at http://pubs.usgs.gov/ds/531/ .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008, 2009

Dixon, J.P., and Stihler, S.D., 2009, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008: U.S. Geological Survey Data Series 467, 88 p., available at http://pubs.usgs.gov/ds/467/ .

Preliminary spreadsheet of eruption source parameters for volcanoes of the world, 2009

Mastin, L.G., Guffanti, Marianne, Ewert, J.E., and Spiegel, Jessica, 2009, Preliminary spreadsheet of eruption source parameters for volcanoes of the world: U.S. Geological Survey Open-File Report 2009-1133, v. 1.2, 25 p., available at http://pubs.usgs.gov/of/2009/1133/ .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006, 2008

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006: U.S. Geological Survey Data Series 326, 79 p., available at http://pubs.usgs.gov/ds/326/ .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007, 2008

Dixon, J.P., Stihler, S.D. and Power, J.A., 2008, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007: U.S. Geological Survey Data Series 367, 82 p., available online at http://pubs.usgs.gov/ds/367/ .

System for ranking relative threats of U.S. volcanoes, 2007

Ewert, John, 2007, System for ranking relative threats of U.S. volcanoes: Natural Hazards Review, v. 8, n. 4, p. 112-124.

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005, 2006

Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, Guy, Estes, Steve, and McNutt, S.R., 2006, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005: U.S. Geological Survey Open-File Report 2006-1264, 78 p., available at http://pubs.usgs.gov/of/2006/1264/ .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004, 2005

Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, Guy, Estes, Steve, Prejean, Stephanie, Sanchez, J.J., Sanches, Rebecca, McNutt, S.R., and Paskievitch, John, 2005, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004: U.S. Geological Survey Open-File Report 2005-1312, 74 p., available online at http://pubs.usgs.gov/of/2005/1312/.

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003, 2004

Dixon, J. P., Stihler, S. D., Power, J. A., Tytgat, Guy, Moran, S. C., Sanchez, J. J., McNutt, S. R., Estes, Steve, and Paskievitch, John, 2004, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003: U.S. Geological Survey Open-File Report 2004-1234, 69 p.
full-text PDF 12.3 MB

The Alaska Volcano Observatory - Expanded monitoring of volcanoes yields results, 2004

Brantley, S. R., McGimsey, R. G., and Neal, C. A., 2004, The Alaska Volcano Observatory - Expanded monitoring of volcanoes yields results: U.S. Geological Survey Fact Sheet FS 2004-3084, 2 p.
full-text PDF 520 KB

Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions, 2003

Siebert, L., and Simkin, T., 2002-, Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions: Smithsonian Institution, Global Volcanism Program Digital Information Series GVP-3, http://volcano.si.edu/search_volcano.cfm, unpaged internet resource.

Bibliography of information on Alaska volcanoes, 2003

Cameron, C. E., Triplehorn, J. H., and Robar, C. L., 2003, Bibliography of information on Alaska volcanoes: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication MP 131, 1 CD-ROM.
Hard Copy held by AVO at FBKS - CEC file cabinet

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002, 2003

Dixon, J. P., Stihler, S. D., Power, J. A., Tytgat, Guy, Moran, S. C., Sanchez, John, Estes, Steve, McNutt, S. R., and Paskievitch, John, 2003, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002: U.S. Geological Survey Open-File Report 03-0267, 58 p.
full-text PDF 7.3 MB

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001, 2002

Dixon, J. P., Stihler, S. D., Power, J. A., Tytgat, Guy, Estes, Steve, Moran, S. C., Paskievitch, John, and McNutt, S. R., 2002, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001: U.S. Geological Survey Open-File Report 02-0342, 56 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

Historically active volcanoes of the Aleutian Arc, 2002

Schaefer, Janet, and Nye, C. J., 2002, Historically active volcanoes of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication MP 0123, unpaged, 1 sheet, scale 1:3,000,000. Superceded by Miscellaneous Publication 133: http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=20181

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999, 2001

Jolly, A. D., Stihler, S. D., Power, J. A., Lahr, J. C., Paskievitch, John, Tytgat, Guy, Estes, Steve, Lockheart, A. D., Moran, S. C., McNutt, S. R., and Hammond, W. R., 2001, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999: U.S. Geological Survey Open-File Report 01-0189, 22 p.
full-text PDF 552 KB
Hard Copy held by AVO at FBKS - CEC file cabinet

Historically active volcanoes in Alaska, a quick reference, 2000

Wallace, K. L., McGimsey, R. G., and Miller, T. P., 2000, Historically active volcanoes in Alaska, a quick reference: U.S. Geological Survey Fact Sheet FS 0118-00, 2 p.
full-text PDF 162 KB
Hard Copy held by AVO at FBKS - CEC file cabinet

Encyclopedia of volcanoes, 2000

Sigurdsson, Haraldur, (ed.), 2000, Encyclopedia of volcanoes: San Diego, CA, Academic Press, 1417 p.

Volcanoes of Alaska, 1998

Nye, C. J., Queen, Katherine, and McCarthy, A. M., 1998, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000, available at http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=7043 .
Hard Copy held by AVO at FBKS - CEC shelf

Catalog of the historically active volcanoes of Alaska, 1998

Miller, T. P., McGimsey, R. G., Richter, D. H., Riehle, J. R., Nye, C. J., Yount, M. E., and Dumoulin, J. A., 1998, Catalog of the historically active volcanoes of Alaska: U.S. Geological Survey Open-File Report 98-0582, 104 p.
Hard Copy held by AVO at FBKS - CEC shelf

Revised geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula, 1997

Wilson, F. H., Weber, F. R., Dochat, T. M., Miller, T. P., and Detterman, R. L., 1997, Revised geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula: U.S. Geological Survey Open-File Report 97-0866, 34 p., 1 sheet, scale 1:250,000.

Volcanoes of the Alaska Peninsula and Aleutian Islands selected photographs, 1997

Neal, Christina, and McGimsey, R. G., 1997, Volcanoes of the Alaska Peninsula and Aleutian Islands selected photographs: U.S. Geological Survey Digital Data Series DDS 0040, 1 CD-ROM.

Quick reference to Alaska's active volcanoes and listing of historical eruptions, 1760-1994, 1995

McGimsey, R. G., and Miller, T. P., 1995, Quick reference to Alaska's active volcanoes and listing of historical eruptions, 1760-1994: U.S. Geological Survey Open-File Report 95-0520, 13 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

Volcanoes of Alaska, 1995

Alaska Division of Geological & Geophysical Surveys, 1995, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000.

Geology of the southern Alaska margin, 1994

Plafker, George, Moore, J. C., and Winkler, G. R., 1994, Geology of the southern Alaska margin: in Plafker, George and Berg, H. C., (eds.), The Geology of Alaska, Geological Society of America The Geology of North America series v. G-1, p. 389-449.

Volcanoes of the world [2nd edition], 1994

Simkin, Tom, and Siebert, Lee, 1994, Volcanoes of the world [2nd edition]: Tucson, Arizona, Geoscience Press, 349 p.
Hard Copy held by AVO at FBKS - CEC shelf

Age, character, and significance of Aleutian arc volcanism, 1994

Fournelle, J. H., Marsh, B. D., and Myers, J. D., 1994, Age, character, and significance of Aleutian arc volcanism: in Plafker, George and Berg, H. C., (eds.), The Geology of Alaska, Geological Society of America The Geology of North America Series v. G-1, p. 723-758.

Notes on Russian America, Parts II-V: Kad'iak, Unalashka, Atkha, the Pribylovs (translated by Marina Ramsay), 1994

Khlebnikov, K. T., 1994, Notes on Russian America, Parts II-V: Kad'iak, Unalashka, Atkha, the Pribylovs (translated by Marina Ramsay): Liapunova, R. G. and Fedorova, S. G., (comps.), Kingston, Ontario and Fairbanks, Alaska, The Limestone Press, 424 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

Quaternary volcanism in the Alaska Peninsula and Wrangell Mountains, Alaska, 1994

Miller, T. P., and Richter, D. H., 1994, Quaternary volcanism in the Alaska Peninsula and Wrangell Mountains, Alaska: in Plafker, George, Jones, D. L., and Berg, H. C., (eds.), The Geology of Alaska, Geological Society of America The Geology of North America series v. G-1, p. 759-779.
Hard Copy held by AVO at FBKS - CEC file cabinet

Aleut dictionary, Unangam Tunudgusii, an unabridged lexicon of the Aleutian, Pribilof, and Commander Islands Aleut language, 1994

Bergsland, Knut, comp., 1994, Aleut dictionary, Unangam Tunudgusii, an unabridged lexicon of the Aleutian, Pribilof, and Commander Islands Aleut language: University of Alaska Fairbanks, Alaska Native Language Center, 739 p.

Geothermal resources of the Aleutian Arc, 1993

Motyka, R. J., Liss, S. A., Nye, C. J., and Moorman, M. A., 1993, Geothermal resources of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Professional Report PR 0114, 17 p., 4 sheets, scale 1:1,000,000.
Hard Copy held by AVO at FBKS - CEC shelf

Holocene volcanoes of the Aleutian Arc, Alaska, 1993

March, G. D., 1993, Holocene volcanoes of the Aleutian Arc, Alaska: Alaska Division of Geological & Geophysical Surveys Public-Data File PDF 93-85, unpaged, 1 sheet, scale 1:2,000,000.

Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas, 1992

Singer, B. S., O'Neil, J. R., and Brophy, J. G., 1992, Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas: Geology, v. 20, n. 4, p. 367-370.

Preliminary geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula, 1992

Wilson, F. H., Miller, T. P., and Detterman, R. L., 1992, Preliminary geologic map of the Cold Bay and False Pass quadrangles, Alaska Peninsula: U.S. Geological Survey Open-File Report 92-0545, 10 p., 1 plate, scale 1:250,000.

ERS-1 radar data for Aleutian and Alaskan volcanoes, 1992

Mouginis-Mark, P. J., Rowland, S. K., and Smith, G. A., 1992, ERS-1 radar data for Aleutian and Alaskan volcanoes [abs.]: Eos, v. 73, n. 43, p. 613-614.

Shishaldin Volcano: Aleutian high-alumina basalts and the question of plagioclase accumulation, 1991

Fournelle, John, and Marsh, B. D., 1991, Shishaldin Volcano: Aleutian high-alumina basalts and the question of plagioclase accumulation: Geology, v. 19, n. 3, p. 234-237.
Hard Copy held by AVO at FBKS - CEC file cabinet

Geology and geochemistry of Fisher Caldera, Unimak Island, Aleutians: initial results, 1990

Fournelle, John, 1990, Geology and geochemistry of Fisher Caldera, Unimak Island, Aleutians: initial results [abs.]: Eos, v. 71, n. 43, p. 1698-1699.

Volcanoes of North America: United States and Canada, 1990

Wood, C. A., and Kienle, Juergen, (eds.), 1990, Volcanoes of North America: United States and Canada: New York, Cambridge University Press, 354 p.
Hard Copy held by AVO at FBKS - CEC shelf

Reconnaissance geology and exploration geochemistry of King Cove, Alaska Peninsula, 1989

DuBois, G. D., Wilson, F. H., Detterman, R. L., and Hopkins, R. T., 1989, Reconnaissance geology and exploration geochemistry of King Cove, Alaska Peninsula: U.S. Geological Survey Open-File Report 89-0352, 23 p.

Geology and petrology of Shishaldin Volcano, Aleutian Arc, 1989

Fournelle, J., and Marsh, B. D., 1989, Geology and petrology of Shishaldin Volcano, Aleutian Arc [abs.]: in International Geological Congress, 28, Abstracts, p. 504-505.

Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods, 1989

Major, J. J., and Newhall, C. G., 1989, Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods: Bulletin of Volcanology, v. 52, p. 1-27.
Hard Copy held by AVO at FBKS - CEC file cabinet

Geology and petrology of Shishaldin volcano, Unimak Island, Aleutian Arc, Alaska, 1988

Fournelle, J. H., 1988, Geology and petrology of Shishaldin volcano, Unimak Island, Aleutian Arc, Alaska: The Johns Hopkins University Ph.D. dissertation, 507 p., 2 plates, scale unknown.

Shishaldin Volcano, Unimak Island, Aleutians: Unordinary arc lavas II: Significant REE patterns, 1987

Fournelle, John, and Marsh, B. D., 1987, Shishaldin Volcano, Unimak Island, Aleutians: Unordinary arc lavas II: Significant REE patterns: Eos, v. 68, n. 16, p. 461.

Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska, 1987

Miller, T. P., and Smith, R. L., 1987, Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska: Geology, v. 15, n. 5, p. 434-438.
full-text PDF 2.5 MB
Hard Copy held by AVO at FBKS - CEC file cabinet

Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska, 1986

Luedke, R. G., and Smith, R. L., 1986, Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 1091-F, unpaged, 3 sheets, scale 1:1,000,000.

The Aleutians, 1982

Marsh, B. D., 1982, The Aleutians: in Thorpe, R. S., (ed.), Andesites: orogenic andesites and related rocks, Chichester, United Kingdom, John Wiley & Sons, p. 99-114.
Hard Copy held by AVO at FBKS - CEC file cabinet

Volcanoes of the world, 1981

Simkin, Tom, Siebert, Lee, McClelland, Lindsay, Bridge, David, Newhall, Christopher, and Latter, J. H., 1981, Volcanoes of the world: Stroudsburg, PA, Hutchinson Publishing Company, 233 p.

Reconnaissance of thermal spring sites in the Aleutian Arc, Atka Island to Becharof Lake, 1981

Motyka, R. J., and Moorman, M. A., 1981, Reconnaissance of thermal spring sites in the Aleutian Arc, Atka Island to Becharof Lake: in Geothermal Resources Council Transactions, v. 5, p. 111-114.

Calc-alkaline plutonism along the Pacific rim of southern Alaska, 1979

Hudson, Travis, 1979, Calc-alkaline plutonism along the Pacific rim of southern Alaska: U.S. Geological Survey Open-File Report 79-0953, 31 p.

Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States, 1978

Smith, R. L., Shaw, H. R., Luedke, R. G., and Russell, S. L., 1978, Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States: U.S. Geological Survey Open-File Report 78-0925, p. 1-25.
Hard Copy held by AVO at FBKS - CEC shelf

Reconnaissance geologic map of the Cold Bay and False Pass quadrangles, Alaska, 1978

McLean, H., Engelhardt, C. L., and Howell, D. G., 1978, Reconnaissance geologic map of the Cold Bay and False Pass quadrangles, Alaska: U.S. Geological Survey Open-File Report 78-0323, unpaged, 1 plate.

Aleutian/Pribilof Islands region community profiles, 1978

Arctic Environmental Information and Data Center, 1978, Aleutian/Pribilof Islands region community profiles: unpaged.

Assessment of geothermal resources of the United States - 1975, 1975

White, D. E., and Williams, D. L., 1975, Assessment of geothermal resources of the United States - 1975: U.S. Geological Survey Circular C 0726, 155 p.

Notes on the islands of the Unalashka district; and, Notes on the Atkhan Aleuts and the Kolosh [translated from Russian by Richard Henry Geogheghan], 1968

Veniaminov, Ivan, 1968, Notes on the islands of the Unalashka district; and, Notes on the Atkhan Aleuts and the Kolosh [translated from Russian by Richard Henry Geogheghan]: Martin, Fredericka, (ed.), Unpublished manuscript, Fairbanks, AK, 944 p.

Thermal springs of the United States and other countries of the world - a summary, 1965

Waring, G. A., 1965, Thermal springs of the United States and other countries of the world - a summary: U.S. Geological Survey Professional Paper PP 0492, 383 p.
Hard Copy held by AVO at FBKS - CEC shelf

Geologic reconnaissance of Frosty Peak volcano and vicinity, Alaska, 1961

Waldron, H. H., 1961, Geologic reconnaissance of Frosty Peak volcano and vicinity, Alaska: in Investigations of Alaskan volcanoes, U.S. Geological Survey Bulletin 1028-T, p. 677-708, 1 plate, scale 1:250,000.
full-text PDF 702 KB
plate 79 PDF 1.9 MB
Hard Copy held by AVO at FBKS - CEC shelf

Alaska Peninsula-Aleutian Islands, 1958

Powers, H. A., 1958, Alaska Peninsula-Aleutian Islands: in Williams, H., (ed.), Landscapes of Alaska, Los Angeles, CA, University of California Press, p. 61-75.

Volcanic activity in the Aleutian Arc, 1950

Coats, R. R., 1950, Volcanic activity in the Aleutian Arc: U.S. Geological Survey Bulletin 0974-B, p. 35-49, 1 sheet, scale 1:5,000,000.
plate 1 PDF 819 KB
full-text PDF 783 KB
Hard Copy held by AVO at FBKS - CEC shelf

Reconnaissance geology of some western Aleutian Islands, 1947

Coats, R. R., 1947, Reconnaissance geology of some western Aleutian Islands: U.S. Geological Survey Alaskan Volcano Investigations Report 0002, p. 95-105.
Hard Copy held by AVO at FBKS - CEC shelf

United States coast pilot, Alaska Part 2, Yakutat Bay to Arctic Ocean, 1947

U.S. Department of Commerce, and Coast and Geodetic Survey, 1947, United States coast pilot, Alaska Part 2, Yakutat Bay to Arctic Ocean: Washington DC, United States Government Printing Office, 659 p.

Glaciers of the Aleutian Islands, 1945

Denton, G. H., 1945, Glaciers of the Aleutian Islands: in Field, W. O., (ed.), Mountain glaciers of the Northern Hemisphere, v. 2, Hanover, NH, Cold Regions Research and Engineering Laboratory, p. 641-650.

The Aleutian and Commander Islands and their inhabitants, 1945

Hrdlicka, Ales, 1945, The Aleutian and Commander Islands and their inhabitants: Philadelphia, PA, Wistar Institute of Anatomy and Biology, 630 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

Cradle of the storms, 1935

Hubbard, B. R., 1935, Cradle of the storms: New York, Dodd, Mead, 285 p.

Shishaldin volcano, 1934

Finch, R. H., 1934, Shishaldin volcano: in Pacific Science Congress, 5, Proceedings, v. 3, Victoria and Vancouver, BC, 1933, p. 2369-2376.
Hard Copy held by AVO at FBKS - CEC file cabinet

Alaskan notes, 1928

Jaggar, T. A., 1928, Alaskan notes: The Volcano Letter, v. 162, p. 1.
full-text PDF 731 KB
Hard Copy held by AVO at FBKS - CEC file cabinet

Reminiscences of Alaskan volcanoes, 1918

Dall, W. H., 1918, Reminiscences of Alaskan volcanoes: Scientific Monthly, v. 7, n. 1, p. 80-90.
Hard Copy held by AVO at FBKS - CEC file cabinet

Katalog der geschichtlichen vulkanausbruche, 1917

Sapper, Karl, 1917, Katalog der geschichtlichen vulkanausbruche: Strassburg, Germany, Karl J. Trubner, 358 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

An island rises from the sea to annex itself, 1906

Dunn, Robert, 1906, An island rises from the sea to annex itself: The Washington Post, Washington, D.C., October 14, 1906, p. 44.
Hard Copy held by AVO at FBKS - CEC file cabinet

Mountains on Unimak Island, Alaska, 1903

Westdahl, F., 1903, Mountains on Unimak Island, Alaska: National Geographic Magazine, v. 14, n. 3, p. 91-99.
Hard Copy held by AVO at FBKS - CEC file cabinet

Shishaldin as a field for exploration, 1899

Stanley-Brown, J.., 1899, Shishaldin as a field for exploration: National Geographic Magazine, v. 10, n. 8, p. 281-288.
Hard Copy held by AVO at FBKS - CEC file cabinet

Reported volcanic eruptions in Alaska, Puget Sound, etc., 1690-1896, 1898

Plummer, F. G., 1898, Reported volcanic eruptions in Alaska, Puget Sound, etc., 1690-1896: in Holden, E. S., (ed.), A Catalogue of Earthquakes on the Pacific Coast 1769-1897, Smithsonian Institution Miscellaneous Collections 1087, City of Washington D.C., Smithsonian Institution, p. 24-27.
Hard Copy held by AVO at FBKS - CEC file cabinet

Reconnaissance of the gold fields of southern Alaska with some notes on general geology, 1898

Becker, G. F., 1898, Reconnaissance of the gold fields of southern Alaska with some notes on general geology: U.S. Geological Survey Annual Report 0018, p. 1-86, 6 sheets, scale unknown.
full-text PDF 1.5 MB
Hard Copy held by AVO at FBKS - CEC file cabinet

Grewingk's geology of Alaska and the Northwest Coast of America [edited by Marvin W. Falk, translation by Fritz Jaensch published 2003], 1850

Grewingk, Constantine, 1850, Grewingk's geology of Alaska and the Northwest Coast of America [edited by Marvin W. Falk, translation by Fritz Jaensch published 2003]: Rasmuson Library Historical Translation Series 11, Fairbanks, AK, The University of Alaska Press, 242 p.
Hard Copy held by AVO at FBKS - CEC shelf

Notes on the islands of the Unalaska district [translated from Russian by Lydia T. Black and R.H. Geoghegan in 1984], 1840

Veniaminov, Ivan, 1840, Notes on the islands of the Unalaska district [translated from Russian by Lydia T. Black and R.H. Geoghegan in 1984]: Pierce, R. A., (ed.), Kingston, Ontario, Limestone Press, 511 p.
Hard Copy held by AVO at FBKS - CEC file cabinet

Notes on the islands of the Unalashka district [Zapiski ob ostravakh Unalashkinskogo otdela], 1840

Veniaminov, I., 1840, Notes on the islands of the Unalashka district [Zapiski ob ostravakh Unalashkinskogo otdela]: v. 1-3, St. Petersburg, Russiisko-Amerikanskoi Kompanii, unknown.

Expedition to the northern parts of Russia, for ascertaining the degree of latitude and longitude of the mouth of the river Kovima; of the whole coast of the Tshutski, to East Cape; and of the islands in the eastern ocean, stretching to the American coast, 1802

Sauer, Martin, 1802, Expedition to the northern parts of Russia, for ascertaining the degree of latitude and longitude of the mouth of the river Kovima; of the whole coast of the Tshutski, to East Cape; and of the islands in the eastern ocean, stretching to the American coast: London, A. Strahan, 3332 p.

Past volcanic activity in the Aleutian arc,

Coats, R. R., Past volcanic activity in the Aleutian arc: U.S. Geological Survey Volcano Investigations Report 1, 18 p.
full-text PDF 22.3 MB
Hard Copy held by AVO at FBKS - CEC file cabinet