Fourpeaked

MarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarkerMarker
Legend
Red (Warning)
Orange (Watch)
Yellow (Advisory)
Green (Normal)
Uninstrumented
Community
Webcam
Instrument
Earthquake Magnitude
0 7+
Earthquake Age
Last 2 Hours
Last 2 Days
Last 1 Week


Facts


  • Official Name: Fourpeaked Mountain
  • Seismically Monitored: No
  • Color Code: UNASSIGNED
  • Alert Level: UNASSIGNED
  • Elevation: 2104m (6902ft)
  • Latitude: 58.7703
  • Longitude: -153.6738
  • Smithsonian VNum: 312260
  • Pronunciation:
  • Nearby Towns:
    • Port William 44 mi (71 km) SE
    • Aleneva 59 mi (95 km) SE
    • Kokhanok 60 mi (97 km) NW
    • Afognak 62 mi (100 km) SE
    • Pope-Vannoy Landing 62 mi (99 km) NW

    Distance from Anchorage: 213 mi (344 km)

Description

From Wood and Kienle (1990) [1] : "Fourpeaked Mountain consists of small isolated volcanic exposures surrounded by the Fourpeaked Glacier. The exposures are found along ridge crests and cliff faces on the sides of ridges that radiate out from the ice-covered summit. Lava flows are interlayered with volcanic agglomerate in the isolated exposures.
"Orientation of lava flows suggests the present summit of Fourpeaked is probably the vent for Fourpeaked volcano. Extensive hydrothermal alteration of rocks in this area is consistent with this vent location.
"Fourpeaked is known only from limited reconnaissance studies. The lavas are porphyritic andesite."

Name Origin

"Fourpeaked Mountain" is a descriptive name, transladed from "G[ora] Chetyrekglavaya" by George Davidson, U.S. Coast and Geodetic Survey. "Gora Chetyrekglavaya" means "four-headed mountain," and was published by Tebenkov in 1852. The Russian Hydrographic Department had previously published "G[ora] Chetyrekh," meaning "mountain of four heads" in 1847. This may be a mountain called "Saint Dolmat" on a 1748 Russian manuscript map (Wagner, 1937; Orth, 1971).


References Cited

[1] Volcanoes of North America: United States and Canada, 1990

Wood, C. A., and Kienle, Juergen, (eds.), 1990, Volcanoes of North America: United States and Canada: New York, Cambridge University Press, 354 p.

Current Activity

No new updates for Fourpeaked volcano since February 7, 2014, 3:45 pm.

Color Code Timeline

Reported Activity

Modern Eruptions

Fourpeaked

Fourpeaked Eruption Timeline

In October, 2006, Oliver Holm of Kodiak, AK, phoned the Anchorage Alaska Volcano Observatory office to report seeing a steam and gas plume at or near the summit of Fourpeaked in 1965. Mr. Holm stated that during July or August of 1965 he was setnetting in Chief Cove, at the northern side of Uyak Bay. One day he went up Shelikof Strait, and as they passed Cape Ugat (on the western side of Kodiak Island, he could see a steam plume coming from at or near the summit of Fourpeaked. Mr. Holm reports that the plume was about the same height as the mountain is tall, from his perspective. He did not notice any ash on the snow, or any discoloration in the plume.

Fourpeaked 2006/9

September 17, 2006

From Neal and others (2009): "As fall arrived in Alaska, a phreatic eruption from a volcano not considered active in the Holocene surprised AVO and residents of south-central Alaska. Late on Sunday, September 17, AVO received several citizen telephone reports of a dark plume, fed by what appeared to be two sources, rising from the area near Cape Douglas in lower Cook Inlet. Satellite analysis indicated the source of the plumes to be roughly between closely spaced Douglas and Fourpeaked volcanoes. he drifting cloud produced by these rising plumes persisted throughout the night, reaching a minimum altitude of 20,000 ft (6,100 m based on radar data; Dave Schneider, USGS, written commun., 2006), but drifting only 20 km (12 mi) downwind in an unusually calm and clear atmosphere over south-central Alaska.
The next day, AVO issued an information release mentioning Douglas and Fourpeaked volcanoes, but stated that the exact nature and source of the plumes remained unclear. Neither volcano was monitored seismically, and data from the nearest stations at Katmai and Augustine initially showed nothing dramatic. Deteriorating weather conditions precluded visual observations, but an overflight was scheduled for the first clear window. On the afternoon of September 18, NWS relayed a pilot report of a strong sulfur odor 300 km (190 mi) northwest of Fourpeaked. This was an area likely to be impacted by drift of the September 17 cloud according to PUFF, a volcanic ash tracking model used by AVO (Searcy and others, 1998). Pilots in the Lake Iliamna area on the morning of September 18 also reported a strong sulfur odor, a locality also consistent with likely cloud drift on the 17th.
On September 20, AVO received NWS radar and other satellite data indicating particulate and sulfur-bearing properties in the cloud of September 17, confirming a volcanic source for the event. Based on this, AVO announced Level of Concern Color Code YELLOW for both Douglas and Fourpeaked volcanoes because the source was still uncertain. NEXRAD Doppler radar images from King Salmon showed a particulate cloud in the atmosphere from at least 12:00 p.m. to 9:45 p.m. ADT on September 17. The cloud appeared most energetic (dense) in the first 2 hours (Dave Schneider, USGS written commun., 2006). The bulk of the cloud remained over the point of origin for much of this time, reflecting very calm atmospheric conditions on that day. In addition, Ozone Monitoring Equipment onboard National Aeronautics and Space Administration's (NASA) Aura satellite indicated a pod of SO2 gas in the general vicinity of the eruption plume at 3:00 p.m. ADT. Subsequently, AVO received reports of a very fine-ash dusting at Nonvianuk Lake outlet (110 km or 70 mi west northwest of Fourpeaked) and near Homer (150 km or 90 mi northeast of Fourpeaked). The Nonvianuk report stated, 'We have a heavy sulfuric smell in the air and ash filling the air. The wind here is blowing from the ESE' No samples were retrievable from either location for analysis, but the Nonvianuk report is consistent with PUFF trajectories for a cloud reaching about 20,000 ft (6,100 m) on the afternoon of September 17. Interestingly, multi-spectral satellite images showed no ash signature in the plume on September 17, but AVO analysts did note a thermal anomaly in the vicinity of Fourpeaked (J. Dehn, University of Alaska Fairbanks Geophysical Institute (UAFGI), written commun., 2006). Following the initial event on September 17th, no further particulate clouds were imaged by radar or other means.
An AVO overflight on September 20 confirmed Fourpeaked as the source of volcanic activity. Despite cloud cover of the actual summit, observers in a fixed-wing aircraft circled several distinct vapor clouds rising through the cloud deck above Fourpeaked. Visible patches of discolored snow and ice, especially north and west of the Fourpeaked summit, suggested ash fallout. An AVO helicopter crew later on the same day photographed a lobate, dark debris-flow tongue that had emerged from glacial ice about 3,000 ft (900 m) below the cloud-covered Fourpeaked summit; patchy areas of grey ash on the glacial ice around the summit and to the northeast also were noted. Clouds and fuel limitations prevented any further exploration of the area.
Aerial inspection of the Fourpeaked area on September 23 finally revealed the source of the September 17 plume and continuing fumarolic emissions. Water vapor and volcanic gas billowed from a dramatic, linear series of pits or vents extending about 1,250 m (4,100 ft) across the heavily crevassed and disrupted glacial-ice cover on the north side of the summit region. Multiple sources of vapor from these vents explain the apparent double plume seen in the photograph of September 17. A light dusting of dark material surrounded some of the open pits and several elongate dark stripes leading down slope from at least one vent probably represented remobilized fragmental ejecta mixed with melted ice and snow (or plume condensate). A subtle series of snow-mantled rills leading down slope in the same area indicated several episodes of surface debris or water flow. Stormy weather between September 17-23, produced new snowfall indicating that the ejecta collars and small debris flows observed on September 23 had occurred after the initial event.
AVO scientists visited the area by helicopter on September 24 and 25. The vent area consisted of as many as nine discrete craters or pits, and between three and five were venting steam and volcanic gas at any one time. The vents occurred along a line trending north from the summit basin, inferred to be a glacial cirque, obliquely down-slope across a northwest trending, ice-covered ridge. The bottoms of non-steaming pits were covered with blocks of debris-mantled ice. The upper craters within the Fourpeaked summit cirque had coalesced creating a heavily disrupted ice zone. Most craters were surrounded by fine (?) debris collars that did not extend very far from their rims; there was no evidence of additional, significant ash emission since September 17. FLIR imaging of the pits indicated elevated temperatures as high as 75C (167F); however, these values are minimums due to steam obscuration. A strong sulfur odor was noted downwind of the vents as far as 50 km (30 mi).
The glacial outburst associated with the September 17 event originated from beneath a chaotic ice jumble on the unnamed north-trending glacier at an elevation of about 5,000 ft. This flood apparently scoured a steep-walled canyon more than 100 m (330 ft) deep in places. Blocks of ice up to 5 m (16 ft) or more across had been rafted in a mixture of water and fine-grained to cobble-boulder sized, heterolithologic volcanic debris at least 6 km (4 mi) down slope, where material spilled off the front of the glacier ice and traveled an unknown distance into the Douglas River drainage. Levees of ice, sediment, and rock clasts as much as 10-15 m (33-50 ft) high marked the margins of the deposit. Where traced into the Douglas River drainage about 3-4 km (2-2.5 mi) from the glacier snout, the deposit was thin (about 2 cm or 0.8 in) and fine grained with a maximum clast size of about 1 cm (0.4 in). The field crew flew the length of the Douglas River to Cook Inlet and noted evidence of a flooding event represented by recently emplaced fine-grained gray sediment on beaches and river banks. On the day of observation, there was no evidence of continuing discharge of meltwater or debris down this newly carved drainage system.
AVO scientists collected samples of the fine, gray ash-fall deposit from the September 17 event. Deposits were most impressive west of the vent area where they were estimated to be 1-2 mm (less than 0.1 in) thick. Other flanks of the volcano received a mere dusting (<1 mm); based on these few observations and the outlier reports of extremely light ash fall noted at two distant locations, the fall deposit likely represents well under 1 million cubic m of material. Preliminary petrographic analyses indicate the tephra consists of hydrothermally altered volcanic rock and crystal fragments, notably pyrite, and other accessory minerals (J. Larsen, UAFGI, written commun., 2006).
AVO geologists in the field on September 24-25 also reported loud rumbling sounds associated with sudden bursts of water from the ice-bedrock contact at an elevation of approximately 4,000 ft on the northwest flank of Fourpeaked; these flows lasted several seconds and then disappeared. An overflight of the cliff below these outbursts did not reveal anything unusual, and any relationship between these periodic outbursts of water with the events of September 17 is uncertain.
AVO geologists made further ground-based observations of the deposits and features related to this unrest in mid-October. Close helicopter passes of the vent area on October 14 revealed that several of the original craters had coalesced and the rims of the sheer-walled pits had retreated, enlarging most by perhaps tens of meters. The pit rims were blanketed by fresh snow indicating no additional ash emission of significance since the explosion on September 17. However, intermittent, vigorous fumarolic activity capable of entraining a small amount of locally derived material may have continued and gone undetected between overflights. Field observers saw no sign of large ballistics littering the surface, so any ongoing phreatic emissions were not very energetic. Yellow-stained (most likely sulfur) snow surrounded the upper crater.
Deposits related to the outburst flood into the Douglas River were examined more closely and consisted of gray, soggy, water-saturated, sulfur-smelling silty material containing cobble-sized clasts of dense, altered, volcanic rock and pyrite (and possibly marcasite). Preliminary results from x-ray diffraction and x-ray fluorescence analyses of a non-pyritic material indicate that the volcanic rock composition primarily is dacite, and that the fine fraction also contains minor gypsum and minor smectite (K. Bull, ADGGS, written commun., 2007). Interestingly, near the snout of the glacier impacted by this outburst flood, AVO geologists noted multiple layers of similar, sulfurous, heterolithologic material exposed in the ice stratigraphy, and postulated that these may represent prior (possibly historical in age) debris-flow events captured in the ice.
Eight airborne gas measurements were obtained between September 23 and November 18, 2006. Sulfur dioxide output was steady and high for a non-erupting volcano ranging between 820-2,940 ton/d (Doukas and McGee, 2007). For the same period, CO2 flux was between 340-834 ton/d. In contrast to Augustine Volcano (McGee and others, 2006), H2S output from Fourpeaked remained quite high, between 70-140 ton/d, likely reflecting the dominance of a wet hydrothermal system at this ice-clad volcano. In addition to these onsite, airborne measurements, Ozone Mapping Instrument (OMI) sensors occasionally detected SO2 clouds in the area. Beginning in October, low sun angles prevented good results and AVO stopped receiving reports from the OMI satellite team at the University of Maryland (D. Schneider, USGS, oral commun., 2006).
Seismic activity as recorded on the three new stations installed following the event on September 17 remained relatively low through the end of the year, typically with only a few volcanic earthquakes captured on most days. These three stations augmented coverage by regional seismic station CCDN about 17 km (~11 mi) northeast of Fourpeaked. On October 3, a swarm consisting of tens to hundreds of very small, non-locatable earthquakes occurred in the vicinity of Fourpeaked. A second swarm on November 5-6 occurred within the new Fourpeaked subnet and 75 events were located. Seismicity remained elevated with occasional small swarms of activity (10 located events per day or less) through the end of the year. Small explosion signals also began to be recorded in the spring; these signals may have reflected transient increases in fumarolic emission.
Further analysis of Katmai area seismic stations during the time period of the eruption cloud and opening of vents in the ice revealed a small swarm of earthquakes between 11:48 a.m. and 3:50 p.m. ADT on September 17 (M. West, UAFGI, oral commun., 2006) coincident in time with the onset and development of the plume seen in radar images. The University of Alaska Fairbanks infrasound array also detected a signal at about 20:50 UTC on September 17, likely an explosion source, at a time and location consistent with the plume sighting (S.R. McNutt, UAFGI, oral commun., 2006).
AVO concluded that the unrest at Fourpeaked volcano most likely involved the presence of new magma at fairly shallow (less than a few kilometers) levels, accounting for the seismicity and degassing, and providing a heat and gas source for a phreatic explosion, vigorous phreatic emission of gas and fine particulates, and a glacial outburst of meltwater, glacial ice, and hydrothermally altered debris on September 17.
A shallow, degassing intrusion of fresh magma also would account for the ongoing gas emissions (K. McGee, USGS, oral commun., 2006). The lack of a seismic network at Fourpeaked precludes exact determination of the onset of seismicity that may have been associated with an intrusion. However, the swarm detected on the Katmai network on September 17 likely captured the most vigorous phase of the event, including the onset of phreatic eruption.
Through the remainder of 2006 and into 2007, a variably robust plume of vapor and volcanic gas discharged from the linear chain of pits in the ice. Overflights into mid-November documented minor changes in the pit morphologies, primarily related to coalescence and widening. No further ash emissions of significance were noted, although an increasingly visible coating of a yellow, likely sulfurous deposit stained snow and ice cover around the Fourpeaked summit."

For detailed observations and photographs of this event, pelase see: Neal, C.A., McGimsey, R.G., Dixon, J.P., Manevich, Alexander, and Rybin, Alexander, 2009, 2006 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2008-5214, 102 p., available at pubs.usgs.gov/sir/2008/5214/ .

McGimsey and others (2011) report that throughout the first half of 2007, seismicity, steaming, and gas emissions decreased at Fourpeaked following the 2006 eruption. McGimsey and others (2014) continue the chronology of this event: "Steam and gas emissions were frequently observed in web camera images and during routine gas measurement flights through the first half of 2008, and were visible to an AVO field crew on Augustine Volcano in July 2008 (AVO internal log entries). Activity continued to decrease into, and through 2009.
"Steam plumes were visible in the web camera on February 8, 2009, and during gas measurement flights on June 6, 2009, and November 2, 2009; during the November overflight, no gas was detected (M. Doukas, U.S. Geological Survey, written commun., 2012). As the phreatic activity diminished, the melt holes begam filling with snow and fumarolic activity was observed only from a single vent.
"The seismic and infrasound networks, and the web cam, were serviced in the summer of 2008, and a year later, as the batteries drained, the instruments stopped recording data. On November 18, 2009, prompted by the network outage and inability to assess the level of seismic activity, AVO issued a Volcanic Activity Notice and an Information Release downgrading Fourpeaked from Aviation Color Code GREEN and Volcano Alert Level Normal to UNASSIGNED, thus removing it from the list of seismically monitored volcanoes."

Loading

Fourpeaked 2013/4

April 2013 — May 2013

From Dixon and others(2015): "A minor increase in seismicity at Fourpeaked Volcano in April and May prompted additional analysis of monitoring data by AVO. AVO also received a report in May of steaming near Mount Douglas and Fourpeaked. During 2013, the Aviation Color Code and Volcano Alert Level for Fourpeaked remained at GREEN/NORMAL.
"A ML=4.5 earthquake occurred just west of Fourpeaked at 06:34 UTC (22:34 AKDT) on May 12. The Alaska Earthquake Information Center (AEIC) located this earthquake 15 km (9 mi) west of Fourpeaked and 25 km (16 mi) west-southwest of Mount Douglas at 15 km (9 mi) depth. This earthquake was immediately preceded by two foreshocks. A dozen small earthquakes occurred in this region in the 3 days before the ML=4.5. Another ML=4.5 earthquake occurred near Fourpeaked at 02:33 UTC (18:33 AKDT) on May 14, about 40 hours after the first earthquake. Comparison of the initial waveforms of the earthquake on seismograph station KABU suggests that both earthquakes had the same location and similar focal mechanisms. AVO analysts located 28 earthquakes in the 2 weeks following the second mainshock. It is unknown if this series of earthquakes are volcanic, but no observations of increased volcanic activity were received.
"On May 19, a crew of Alaska Department of Fish and Game biologists reported steaming near Mount Douglas and Fourpeaked. AVO followed up on this report, noting that the lake at Mount Douglas froze over in previous years but did not freeze in 2013, which is likely the cause of the isolated report."

Fourpeaked 1965/7

Fourpeaked 2006/9

Fourpeaked 2013/4

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
1953
1954
1955
1956
1957
1958
1959
1961
1962
1963
1964
1965
1966
1967
1968
1969
1971
1972
1973
1974
1975
1976
1977
1978
1979
1981
1982
1983
1984
1985
1986
1987
1988
1989
1991
1992
1993
1994
1995
1996
1997
1998
1999
2001
2002
2003
2004
2005
2006
2007
2008
2009
2011
2012
2013
2014
2015
2016
2017
2018
2019
2021
2022
2023
2024

3 Event Date(s)

Past Activity Legend:
Eruption
Questionable eruption
Non-eruptive activity


Showing 1 - 20 of 200

Map Images


Map References


Recently active volcanoes of Alaska, 2023

Cameron, C.E., Bull, K.F., and Macpherson, A.E., 2023, Recently active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 6, 2 sheets. https://doi.org/10.14509/31086.

Historically active volcanoes of Alaska, v. 3, 2018

Cameron, C.E., Schaefer, J.R., and Mulliken, K.M., 2018, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 3, 2 sheets. Http://doi.org/10.14509/30142

Historically active volcanoes of Alaska, 2014

Schaefer, J.R., Cameron, C.E., and Nye, C.J., 2014, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 1.2, 1 sheet, scale 1:3,000,000. This publication has been superseded. Newest version available at http://www.dggs.alaska.gov/pubs/id/20181 .

Preliminary geologic map of the Cook Inlet Region, Alaska - including parts of the Talkeetna, Talkeetna Mountains, Tyonek, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles, 2009

Wilson, F.H., Hults, C.P., Schmoll, H.R., Haeussler, P.J., Schmidt, J.M., Yehle, L.A., and Labay, K.A., compilers; digital files prepared by Wilson, F.H., Hults, C.P., Labay, K.A., and Shew, Nora, 2009, Preliminary geologic map of the Cook Inlet Region, Alaska - including parts of the Talkeetna, Talkeetna Mountains, Tyonek, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles: U.S. Geological Survey Open-File Report 2009-1108, scale 1:250:000, available at http://pubs.usgs.gov/of/2009/1108/ .

Volcanoes of Alaska, 1998

Nye, C. J., Queen, Katherine, and McCarthy, A. M., 1998, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000, available at http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=7043 .
Hard Copy held by AVO at FBKS - CEC shelf

Volcanoes of Alaska, 1995

Alaska Division of Geological & Geophysical Surveys, 1995, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000.

Geothermal resources of the Aleutian Arc, 1993

Motyka, R. J., Liss, S. A., Nye, C. J., and Moorman, M. A., 1993, Geothermal resources of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Professional Report PR 0114, 17 p., 4 sheets, scale 1:1,000,000.
Hard Copy held by AVO at FBKS - CEC shelf

Quaternary geologic map of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska, 1993

Riehle, J. R., and Detterman, R. L., 1993, Quaternary geologic map of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 2032, unpaged, 1 sheet, scale 1:250,000.

Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, Alaska, 1992

Shew, Nora, and Lanphere, M. A., 1992, Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF 2021-E, unpaged, 1sheet, scale 1:250,000.

Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska, 1986

Luedke, R. G., and Smith, R. L., 1986, Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 1091-F, unpaged, 3 sheets, scale 1:1,000,000.

References

Tephra samples and analyses from Cook Inlet source volcanoes and Anchor Point, Alaska, 2024

Loewen, M.W., Wallace, Kristi, Coombs, M.L., and Mulliken, K.M., 2023, Tephra samples and analyses from Cook Inlet source volcanoes and Anchor Point, Alaska: Alaska Division of Geological & Geophysical Surveys Raw Data File 2023-25, 4 p. https://doi.org/10.14509/31090

Proximity to active volcanoes enhances glacier velocity, 2024

Mallalieu, J., Barr, I.D., Spagnolo, M., Mullan, D.J., Symeonakis, E., Edwards, B.R., and Martin, M.D., 2024, Proximity to active volcanoes enhances glacier velocity: Communications Earth & Environment v. 5, 679. https://doi.org/10.1038/s43247-024-01826-5
Full-text PDF 1.3 MB

Recently active volcanoes of Alaska, 2023

Cameron, C.E., Bull, K.F., and Macpherson, A.E., 2023, Recently active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 6, 2 sheets. https://doi.org/10.14509/31086.

Understanding drivers of mercury in lake trout (Salvelinus namaycush), a top-predator fish in southwest Alaska's parklands, 2023

Bartz, K.K., Hannam, M.P., Wilson, T.L., Lepak, R.F., Ogorek, J.M., Young, D.B., Eagles-Smith, C.A., and Krabbenhoft, D.P., 2023, Understanding drivers of mercury in lake trout (Salvelinus namaycush), a top-predator fish in southwest Alaska's parklands: Environmental Pollution v. 330, 121678. https://doi.org/10.1016/j.envpol.2023.121678
Full-text PDF 3.8 MB

Geologic database of information on volcanoes in Alaska (GeoDIVA), 2022

Cameron, C.E., Crass, S.W., and AVO Staff, eds, 2022, Geologic database of information on volcanoes in Alaska (GeoDIVA): Alaska Division of Geologic and Geophysical Surveys Digital Data Series 20, https://doi.org/10.14509/geodiva, https://doi.org/10.14509/30901.

Quantifying eruptive and background seismicity, deformation, degassing, and thermal emissions at volcanoes in the United States during 1978-2020, 2021

Reath, K., Pritchard, M.E., Roman, D.C., Lopez, T., Carn, S., Fischer, T.P., Lu, Z., Poland, M.P., Vaughan, R.G., Wessels, R., Wike, L.L., and Tran, H.K., 2021, Quantifying eruptive and background seismicity, deformation, degassing, and thermal emissions at volcanoes in the United States during 1978-2020: Journal of Geophysical Research: Solid Earth, v. 126, e2021JB021684, doi: 10.1029/2021JB021684.

Historically active volcanoes of Alaska, v. 4, 2020

Cameron, C.E., Schaefer, J.R., and Ekberg, P.G., 2020, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 4, 2 sheets. Http://doi.org/10.14509/30426

Catalog of earthquake parameters and description of seismograph and infrasound stations at Alaskan volcanoes - January 1, 2013, through December 31, 2017, 2019

Dixon, J.P., Stihler S.D., Haney, M.M., Lyons, J.J., Ketner, D.M., Mulliken, K.M., Parker, T., and Power, J.A., 2019, Catalog of earthquake parameters and description of seismograph and infrasound stations at Alaskan volcanoes - January 1, 2013, through December 31, 2017: U.S. Geological Survey Data Series 1115, 92 p., https://doi.org/10.3133/ds1115.

A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska: 1989 to 2018, 2019

Power, J.A., Friberg, P.A., Haney, M.M., Parker, T., Stihler, S.D., and Dixon, J.P., 2019, A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska—1989 to 2018: U.S. Geological Survey Scientific Investigations Report 2019–5037, 17 p., https://doi.org/10.3133/sir20195037.

Geochemistry of some Quaternary lavas from the Aleutian Arc and Mt. Wrangell, 2018

Nye, C.J., Beget, J.E., Layer, P.W., Mangan, M.T., McConnell, V.S., McGimsey, R.G., Miller, T.P., Moore, R.B., and Stelling, P.L., 2018, Geochemistry of some quaternary lavas from the Aleutian Arc and Mt. Wrangell: Alaska Division of Geological & Geophysical Surveys Raw Data File 2018-1, 29 p. http://doi.org/10.14509/29843

The Alaska Volcano Observatory: 30 years of protecting Alaskans from the effects of volcanic activity (1988-2018), 2018

Mulliken, K.M., 2018, The Alaska Volcano Observatory: 30 years of protecting Alaskans from the effects of volcanic activity (1988-2018): Alaska Division of Geological & Geophysical Surveys Information Circular 67, 2 p. http://doi.org/10.14509/30032

The influence of tectonic environment on dynamic earthquake triggering: a review and case study on Alaskan volcanoes, 2018

Prejean, S.G., and Hill, D.P., 2018, The influence of tectonic environment on dynamic earthquake triggering: a review and case study on Alaskan volcanoes: Tectonophysics, v. 745, p. 293-304, doi.org/10.1016/j.tecto.2018.08.007.

2018 update to the U.S. Geological Survey national volcanic threat assessment, 2018

Ewert, J.W., Diefenbach, A.K., and Ramsey, D.W., 2018, 2018 update to the U.S. Geological Survey national volcanic threat assessment: U.S. Geological Survey Scientific Investigations Report 2018-5140, 40 p., https://pubs.usgs.gov/sir/2018/5140/sir20185140.pdf.

Historically active volcanoes of Alaska, v. 3, 2018

Cameron, C.E., Schaefer, J.R., and Mulliken, K.M., 2018, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 3, 2 sheets. Http://doi.org/10.14509/30142

Volcanic impacts on modern glaciers: a global synthesis, 2018

Barr, I.D., Lynch, C.M., Mullan, Donal, De Siena, Luca, and Spagnolo, Matteo, 2018, Volcanic impacts on modern glaciers: a global synthesis: Earth-Science Reviews, v. 182, p. 186-203, doi: http://dx.doi.org/10.1016/j.earscirev.2018.04.008.

2014 Volcanic activity in Alaska - Summary of events and response of the Alaska Volcano Observatory, 2017

Cameron, C.E., Dixon, J.P., Neal, C.A., Waythomas, C.F., Schaefer, J.R., and McGimsey, R.G., 2017, 2014 Volcanic activity in Alaska - Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2017-5077, 81 p., https://doi.org/10.3133/sir20175077.
full-text PDF 6.8 MB

Historically active volcanoes of Alaska, 2016

Cameron, C.E., and Schaefer, J.R., 2016, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 2, 1 sheet, scale 1:3,000,000. http://doi.org/10.14509/20181

Alaska Volcano Observatory image database, 2016

Cameron, C.E., and Snedigar, S.F., 2016, Alaska Volcano Observatory image database: Alaska Division of Geological & Geophysical Surveys Digital Data Series 13, https://www.avo.alaska.edu/images/. https://doi.org/10.14509/29689.

2013 Volcanic activity in Alaska - summary of events and response of the Alaska Volcano Observatory, 2015

Dixon, J.P., Cameron, Cheryl, McGimsey, R.G., Neal, C.A., and Waythomas, Chris, 2015, 2013 Volcanic activity in Alaska - Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2015-5110, 92 p., http://dx.doi.org/10.3133/sir20155110.

Historically active volcanoes of Alaska, 2014

Schaefer, J.R., Cameron, C.E., and Nye, C.J., 2014, Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 1.2, 1 sheet, scale 1:3,000,000. This publication has been superseded. Newest version available at http://www.dggs.alaska.gov/pubs/id/20181 .

Regional controls on volcano seismicity along the Aleutian Arc, 2014

Buurman, Helena, Nye, C.J., West, M.E., and Cameron, Cheryl, 2014, Regional controls on volcano seismicity along the Aleutian Arc: Geochemistry, Geophysics, Geosystems, doi:10.1002/2013GC005101

2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands - Summary of events and response of the Alaska Volcano Observatory, 2014

Neal, C.A., Herrick, J., Girina, O.,A., Chibisova, M., Rybin, A., McGimsey, R.G., and Dixon, J., 2014, 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands - Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2014-5034, 76 p., http://dx.doi.org/10.3133/sir20145034 .

2012 Volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory, 2014

Herrick, J.A., Neal, C.A., Cameron, C.E., Dixon, J.P., and McGimsey, R.G., 2014, 2012 Volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2014-5160, 82p., http://dx.doi.org/10.3133/sir20145160.

Preliminary database of Quaternary vents in Alaska, 2014

Cameron, C.E., and Nye, C.J., 2014, Preliminary database of Quaternary vents in Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 153, 11 p., doi:10.14509/27357 .

InSAR imaging of Aleutian volcanoes, 2014

Lu, Zhong, and Dzurisin, Daniel, 2014, InSAR imaging of Aleutian volcanoes: Chichester, UK, Springer-Praxis, 390 p.

A volcanic activity alert-level system for aviation: review of its development and application in Alaska, 2013

Guffanti, Marianne, and Miller, Tom, 2013, A volcanic activity alert-level system for aviation: review of its development and application in Alaska: Natural Hazards, 15 p., doi:0.1007/s11069-013-0761-4
full-text pdf 359 kb

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012, 2013

Dixon, J.P., Stihler, S.D, Power, J.A., Haney, Matt, Parker, Tom, Searcy, C.K., and Prejean, Stephanie, 2013, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012: U.S. Geological Survey Data Series 789, 84 p., available at http://pubs.usgs.gov/ds/789/ .
full-text pdf 6.5 MB

Katmai scientific studies, 2012

Winfree, Robert, with contributions from Bacon, C.R., Bennett, A.J., Bennington, Ninfa, Berg, E.E., Brooks, Margi, Coletti, H.A., Coombs, M.L., Fierstein, Judy, Freeburg, Gary, Frost, G.V., Haney, Matthew, Jorgenson, M.T., Miller, A.E., Moran, Seth, Murphy, Rachel, Partnow, Patricia, Paskievitch, John, Stevens, D.P., Powell, Lee, Power, John, Prejean, S.G., Schaaf, Jeanne, Sherriff, R.L., Thurber, Clifford, and Welchman, R.A., 2012, Katmai science studies: Alaska Park Science Journal, v. 11, n. 1, 96 p., available online at http://www.nps.gov/akso/nature/science/ak_park_science/volume_11_issue_1.cfm .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011, 2012

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2012, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011: U.S. Geological Survey Data Series 730, 82 p., available online at http://pubs.usgs.gov/ds/730/pdf/ds730.pdf .

Evidence of magma intrusion at Fourpeaked volcano, Alaska in 2006-2007 from a rapid-response seismic network and volcanic gases, 2011

Gardine, Matt, West, Michael, Werner, Cynthia, and Doukas, Michael, 2011, Evidence of magma intrusion at Fourpeaked volcano, Alaska in 2006-2007 from a rapid-response seismic network and volcanic gases: Journal of Volcanology and Geothermal Research, v. 200, p. 192-200, doi: 10.1016/j.jvolgeores.2010.11.018.

2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory, 2011

McGimsey, R.G., Neal, C.A., Dixon, J.P., Malik, Nataliya, and Chibisova, Marina, 2011, 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2010-5242, 110 p. Available online at http://pubs.usgs.gov/sir/2010/5242/ .

Gas emission from failed and actual eruptions from Cook Inlet Volcanoes, Alaska, 1989-2006, 2011

Werner, C.A., Doukas, M.P., and Kelly, P.J., 2011, Gas emission from failed and actual eruptions from Cook Inlet Volcanoes, Alaska, 1989-2006: Bulletin of Volcanology, v. 73, n. 2, p. 155-173, doi: 10.1007/s00445-011-0453-4 .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010, 2011

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2011, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010: U.S. Geological Survey Data Series 645, 82 p., available online at http://pubs.usgs.gov/ds/645/

Gas emissions from failed and actual eruptions from Cook Inlet volcanoes, Alaska, 1989-2006, 2011

Werner, C.A., Doukas, M.P., and Kelly, P.J., 2011, Gas emissions from failed and actual eruptions from Cook Inlet volcanoes, Alaska, 1989-2006, in Roman, D.C., Moran, S.C., and Newhall, Chris (eds.), Failed eruptions: Late-stage cessation of magma ascent: Bulletin of Volcanology, v. 73, p. 155-173.

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009, 2010

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, C.K., 2010, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009: U.S. Geological Survey Data Series 531, 84 p., available online at http://pubs.usgs.gov/ds/531/ .

Geophysical Institute, 2007-2010 report, 2010

University of Alaska Fairbanks Geophysical Institute, 2010, Geophysical Institute, 2007-2010 report: 48 p., available online at http://www.gi.alaska.edu/admin/info/gireport

Tracing the movement and storage of magma in the crust through seismology: examples from Alaska and western Mexico, 2010

Gardine, M.D., Tracing the movement and storage of magma in the crust through seismology: examples from Alaska and western Mexico: University of Alaska Fairbanks Ph.D. dissertation, 96 p.

2006 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory, 2009

Neal, C.A., McGimsey, R.G., Dixon, J.P., Manevich, Alexander, and Rybin, Alexander, 2009, 2006 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2008-5214, 102 p., available at http://pubs.usgs.gov/sir/2008/5214/ .

Preliminary geologic map of the Cook Inlet Region, Alaska - including parts of the Talkeetna, Talkeetna Mountains, Tyonek, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles, 2009

Wilson, F.H., Hults, C.P., Schmoll, H.R., Haeussler, P.J., Schmidt, J.M., Yehle, L.A., and Labay, K.A., compilers; digital files prepared by Wilson, F.H., Hults, C.P., Labay, K.A., and Shew, Nora, 2009, Preliminary geologic map of the Cook Inlet Region, Alaska - including parts of the Talkeetna, Talkeetna Mountains, Tyonek, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles: U.S. Geological Survey Open-File Report 2009-1108, scale 1:250:000, available at http://pubs.usgs.gov/of/2009/1108/ .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008, 2009

Dixon, J.P., and Stihler, S.D., 2009, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008: U.S. Geological Survey Data Series 467, 88 p., available at http://pubs.usgs.gov/ds/467/ .

Near-real-time volcanic ash cloud detection: Experiences from the Alaska Volcano Observatory, 2009

Webley, P.W., Dehn, J., Lovick, J., Dean, K.G., Bailey, J.E., and Valcic, L., 2009, Near-real-time volcanic ash cloud detection: Experiences from the Alaska Volcano Observatory: Journal of Volcanology and Geothermal Research, v. 186, n. 1-2, p. 79-90, doi:10.1016/j.jvolgeores.2009.02.010 .

Infrasonic ambient noise interferometry from correlations of microbaroms, 2009

Haney, M.M., 2009, Infrasonic ambient noise interferometry from correlations of microbaroms: Geophysical Research Letters, v. 36, n. L19808, 5 p., doi: 10.1029/2009GL04017 .
full-text PDF 277 KB

Chronology and references of volcanic eruptions and selected unrest in the United States, 1980-2008, 2009

Diefenbach, A.K., Guffanti, Marianne, and Ewert, J.W., 2009, Chronology and references of volcanic eruptions and selected unrest in the United States, 1980-2008: U.S. Geological Survey Open-File Report 2009-1118, 85 p., available at http://pubs.usgs.gov/of/2009/1118/ .

Preliminary spreadsheet of eruption source parameters for volcanoes of the world, 2009

Mastin, L.G., Guffanti, Marianne, Ewert, J.E., and Spiegel, Jessica, 2009, Preliminary spreadsheet of eruption source parameters for volcanoes of the world: U.S. Geological Survey Open-File Report 2009-1133, v. 1.2, 25 p., available at http://pubs.usgs.gov/of/2009/1133/ .

Historically active volcanoes of Alaska reference deck, 2009

Snedigar, S.F., and Cameron, C.C., 2009, Historically active volcanoes of Alaska reference deck: Alaska Division of Geological & Geophysical Surveys Information Circular 59, 52 p, available to order from http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=20401 .

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006, 2008

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006: U.S. Geological Survey Data Series 326, 79 p., available at http://pubs.usgs.gov/ds/326/ .

The Alaska Volcano Observatory - 20 years of volcano research, monitoring, and eruption response, 2008

Schaefer, J.R., and Nye, Chris, 2008, The Alaska Volcano Observatory - 20 years of volcano research, monitoring, and eruption response: Alaska Division of Geological & Geophysical Surveys, Alaska GeoSurvey News, NL 2008-001, v. 11, n. 1, p. 1-9, available at http://wwwdggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=16061 .

20th anniversary of the Alaska Volcano Observatory, 2008

University of Alaska Fairbanks Geophysical Institute, 2008, 20th anniversary of the Alaska Volcano Observatory: University of Alaska Geophysical Institute pamphlet, 2 p.

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007, 2008

Dixon, J.P., Stihler, S.D. and Power, J.A., 2008, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007: U.S. Geological Survey Data Series 367, 82 p., available online at http://pubs.usgs.gov/ds/367/ .

Gas emissions related to heightened activity at Fourpeaked Volcano, 2006-2007, Katmai National Park, Alaska, 2008

Werner, C., Doukas, M., Cervelli, P., Carn, S.A., 2008. Gas emissions related to heightened activity at Fourpeaked Volcano, 2006-2007, Katmai National Park, Alaska [abs.]: IAVCEI 2008 Abstracts, August 17-22, Reykjavik, Iceland, p. 33.

Gas emissions from failed and successful eruptions in Alaska, 1990-2006, 2008

Werner, C., Doukas, M., and Staff, A., 2008, Gas emissions from failed and successful eruptions in Alaska, 1990-2006 [abs.]: Eos, Transactions, American Geophysical Union, v. 89, n. 53, 1 p.

System for ranking relative threats of U.S. volcanoes, 2007

Ewert, John, 2007, System for ranking relative threats of U.S. volcanoes: Natural Hazards Review, v. 8, n. 4, p. 112-124.

Fourpeaked, 2007

Smithsonian Institution, 2007, Fourpeaked: Bulletin of Global Volcanism Network, v. 31, n. 9, September 2007, available at http://www.volcano.si.edu/world/volcano.cfm?vnum=1102-26-&volpage=var .

A compilation of gas emission-rate data from volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 1995-2006, 2007

Doukas, M.P., and McGee, K.A., 2007, A compilation of gas emission-rate data from volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 1995-2006: U.S. Geological Survey Open-File Report 2007-1400, 13 p., available at http://pubs.usgs.gov/of/2007/1400/ .

The style of water-magma mixing and its effect on the dynamics of volcanic plumes, 2007

Mastin, L.G., 2007, The style of water-magma mixing and its effect on the dynamics of volcanic plumes [abs.]: Geological Society of America - Abstracts with Programs, v. 39, n. 4, p. 21.

Satellite measurement of glaciers on volcanoes in Alaska: building an inventory of ice extent and hazards, 2007

Wessels, Rick, Neal, C.A., Waythomas, Christopher, Huggel, Christian, and Dean, Ken, 2007, Satellite measurement of glaciers on volcanoes in Alaska: building an inventory of ice extent and hazards [abs.]: Geological Society of America - Abstracts with Programs, v. 39, n. 4, p. 20.

Alaska Volcano Observatory: outreach, education, and communication, one eruption at a time, 2006

Adleman, J.N., Snedigar, S., and Wallace, K., 2006, Alaska Volcano Observatory: outreach, education, and communication, one eruption at a time [abs.]: Geological Society of Americal Abstracts with Program, v. 38, n. 7, p. 516, available on the World Wide Web at http://gsa.confex.com/gsa/2006AM/finalprogram/abstract_113524.htm

The National Volcano Early Warning System (NVEWS), 2006

Ewert, John, Guffanti, Marianne, Cervelli, Peter, and Quick, James, 2006, The National Volcano Early Warning System (NVEWS): U.S. Geological Survey Fact Sheet FS 2006-3142, 2 p., available at http://pubs.usgs.gov/fs/2006/3142 .

Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions, 2003

Siebert, L., and Simkin, T., 2002-, Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions: Smithsonian Institution, Global Volcanism Program Digital Information Series GVP-3, http://volcano.si.edu/search_volcano.cfm, unpaged internet resource.

Bibliography of information on Alaska volcanoes, 2003

Cameron, C. E., Triplehorn, J. H., and Robar, C. L., 2003, Bibliography of information on Alaska volcanoes: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication MP 131, 1 CD-ROM.
Hard Copy held by AVO at FBKS - CEC file cabinet

The great eruption of 1912, 2002

Adleman, Jennifer, 2002, The great eruption of 1912: National Park Service Alaska Park Science Winter 2002, Anchorage, AK, http://www.arlis.org/docs/vol1/52558645/52558645v1no1.pdf , p. 4-11.
full-text PDF 1.6 MB
Hard Copy held by AVO at FBKS - CEC file cabinet

Volcanoes of Alaska, 1998

Nye, C. J., Queen, Katherine, and McCarthy, A. M., 1998, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000, available at http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=7043 .
Hard Copy held by AVO at FBKS - CEC shelf

Volcanoes of the Alaska Peninsula and Aleutian Islands selected photographs, 1997

Neal, Christina, and McGimsey, R. G., 1997, Volcanoes of the Alaska Peninsula and Aleutian Islands selected photographs: U.S. Geological Survey Digital Data Series DDS 0040, 1 CD-ROM.

Stratigraphic framework of the Alaska Peninsula, 1996

Detterman, R. L., Case, J. E., Miller, J. W., Wilson, F. H., and Yount, M. E., 1996, Stratigraphic framework of the Alaska Peninsula: U.S. Geological Survey Bulletin 1969-A, 74 p.
full-text PDF 2.7 MB

Volcanoes of Alaska, 1995

Alaska Division of Geological & Geophysical Surveys, 1995, Volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Information Circular IC 0038, unpaged, 1 sheet, scale 1:4,000,000.

Mesozoic macrofossil locality map, checklists, and pre-Quaternary stratigraphic section of the Mt. Katmai and adjacent parts of the Afognak and Naknek quadrangles, Alaska Peninsula, Alaska, 1995

Miller, J.W., Elder, W.P., and Detterman, R.L., 1995, Mesozoic macrofossil locality map, checklists, and pre-Quaternary stratigraphic section of the Mt. Katmai and adjacent parts of the Afognak and Naknek quadrangles, Alaska Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map 2021-G, 3 sheets. https://doi.org/10.3133/mf2021G

Volcanic eruptions and tsunami generation in the eastern Aleutian arc: the geologic record, 1994

Beget, J. E., 1994, Volcanic eruptions and tsunami generation in the eastern Aleutian arc: the geologic record [abs.]: Abstracts with Programs - Geological Society of America, v. 26, n. 7, p. A138.

Mineral-resource assessments in Alaska: background information to accompany maps and reports about geology and undiscovered-mineral-resource potential of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, 1994

Riehle, J. R., Church, S. E., Detterman, R. L., and Miller, J. W., 1994, Mineral-resource assessments in Alaska: background information to accompany maps and reports about geology and undiscovered-mineral-resource potential of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula: U.S. Geological Survey Circular C 1106, 13 p.

Volcanoes of the world [2nd edition], 1994

Simkin, Tom, and Siebert, Lee, 1994, Volcanoes of the world [2nd edition]: Tucson, Arizona, Geoscience Press, 349 p.
Hard Copy held by AVO at FBKS - CEC shelf

Quaternary volcanism in the Alaska Peninsula and Wrangell Mountains, Alaska, 1994

Miller, T. P., and Richter, D. H., 1994, Quaternary volcanism in the Alaska Peninsula and Wrangell Mountains, Alaska: in Plafker, George, Jones, D. L., and Berg, H. C., (eds.), The Geology of Alaska, Geological Society of America The Geology of North America series v. G-1, p. 759-779.
Hard Copy held by AVO at FBKS - CEC file cabinet

Geothermal resources of the Aleutian Arc, 1993

Motyka, R. J., Liss, S. A., Nye, C. J., and Moorman, M. A., 1993, Geothermal resources of the Aleutian Arc: Alaska Division of Geological & Geophysical Surveys Professional Report PR 0114, 17 p., 4 sheets, scale 1:1,000,000.
Hard Copy held by AVO at FBKS - CEC shelf

Quaternary geologic map of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska, 1993

Riehle, J. R., and Detterman, R. L., 1993, Quaternary geologic map of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 2032, unpaged, 1 sheet, scale 1:250,000.

Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, Alaska, 1992

Shew, Nora, and Lanphere, M. A., 1992, Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF 2021-E, unpaged, 1sheet, scale 1:250,000.

Resource assessment of the Mount Katmai 1x2 deg quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, 1991

Riehle, J. R., Church, S. E., and Magoon, L. B., 1991, Resource assessment of the Mount Katmai 1x2 deg quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula [abs.]: in Good, E. G., Slack, J. F., and Kotra, R. K., (eds.), USGS Research on Mineral Resources-1991 Program and Abstracts, U.S. Geological Survey Circular C 1062, p. 65-66.

Volcanoes of North America: United States and Canada, 1990

Wood, C. A., and Kienle, Juergen, (eds.), 1990, Volcanoes of North America: United States and Canada: New York, Cambridge University Press, 354 p.
Hard Copy held by AVO at FBKS - CEC shelf

Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska, 1986

Luedke, R. G., and Smith, R. L., 1986, Map showing distribution, composition, and age of Late Cenozoic volcanic centers in Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I 1091-F, unpaged, 3 sheets, scale 1:1,000,000.

Magmatism and subduction in the eastern Aleutian Arc, 1983

Kienle, J., Swanson, S. E., and Pulpan, H., 1983, Magmatism and subduction in the eastern Aleutian Arc: in Shimozuru, D. and Yokoyama, I., (eds.), Arc volcanism: physics and tectonics, IAVCEI symposium, Proceedings, Tokyo and Hakone, Japan, Aug. 3l -Sept. 5, 1981, Tokyo, Terra Scientific Publishing Co., p. 191-224.
Hard Copy held by AVO at FBKS - CEC file cabinet

Volcanism in the eastern Aleutian Arc: late Quaternary and Holocene centers, tectonic setting and petrology, 1983

Kienle, Juergen, and Swanson, S. E., 1983, Volcanism in the eastern Aleutian Arc: late Quaternary and Holocene centers, tectonic setting and petrology: Journal of Volcanology and Geothermal Research, v. 17, n. 1-4, p. 393-432.
Hard Copy held by AVO at FBKS - CEC file cabinet

Plate subduction and volcanism in the eastern Aleutian Arc: 2, Petrology, 1982

Swanson, S. E., and Kienle, Juergen, 1982, Plate subduction and volcanism in the eastern Aleutian Arc: 2, Petrology [abs.]: Abstracts with Programs - Geological Society of America, v. 14, n. 7, p. 628.

The Aleutians, 1982

Marsh, B. D., 1982, The Aleutians: in Thorpe, R. S., (ed.), Andesites: orogenic andesites and related rocks, Chichester, United Kingdom, John Wiley & Sons, p. 99-114.
Hard Copy held by AVO at FBKS - CEC file cabinet

Volcanic centers in the Katmai area, Alaska, 1981

Kienle, Juergen, Swanson, S. E., and Pulpan, Hans, 1981, Volcanic centers in the Katmai area, Alaska [abs.]: Eos, v. 62, n. 17, p. 430.

Volcanoes of the world, 1981

Simkin, Tom, Siebert, Lee, McClelland, Lindsay, Bridge, David, Newhall, Christopher, and Latter, J. H., 1981, Volcanoes of the world: Stroudsburg, PA, Hutchinson Publishing Company, 233 p.

Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States, 1978

Smith, R. L., Shaw, H. R., Luedke, R. G., and Russell, S. L., 1978, Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States: U.S. Geological Survey Open-File Report 78-0925, p. 1-25.
Hard Copy held by AVO at FBKS - CEC shelf

Gravity survey in the general area of the Katmai National Monument, Alaska, 1968

Kienle, Juergen, 1968, Gravity survey in the general area of the Katmai National Monument, Alaska: University of Alaska Fairbanks Ph.D. dissertation, 151 p.

Microearthquake study of Mount Katmai and vicinity, Alaska, 1967

Matumoto, Tosimatu, and Ward, P. L., 1967, Microearthquake study of Mount Katmai and vicinity, Alaska: Journal of Geophysical Research, v. 72, n. 10, p. 2557-2568.

Alaska Peninsula-Aleutian Islands, 1958

Powers, H. A., 1958, Alaska Peninsula-Aleutian Islands: in Williams, H., (ed.), Landscapes of Alaska, Los Angeles, CA, University of California Press, p. 61-75.

Magnificent Katmai, 1952

Sumner, Lowell, 1952, Magnificent Katmai: Sierra Club Bulletin, v. 37, n. 10, p. 29-51.
Hard Copy held by AVO at FBKS - CEC file cabinet

United States coast pilot, Alaska Part 2, Yakutat Bay to Arctic Ocean, 1947

U.S. Department of Commerce, and Coast and Geodetic Survey, 1947, United States coast pilot, Alaska Part 2, Yakutat Bay to Arctic Ocean: Washington DC, United States Government Printing Office, 659 p.

Past volcanic activity in the Aleutian arc,

Coats, R. R., Past volcanic activity in the Aleutian arc: U.S. Geological Survey Volcano Investigations Report 1, 18 p.
full-text PDF 22.3 MB
Hard Copy held by AVO at FBKS - CEC file cabinet

Ash Forecasting

Mathematical models developed by the USGS forecast various aspects of how a volcanic ash plume will interact with wind—where, how high, and how fast ash particles will be transported in the atmosphere, as well as where ash will fall out and accumulate on the ground. AVO runs these models when a volcano is restless by assuming a reasonable hypothetical eruption, to provide a pre-eruptive forecast of areas likely to be affected. During an ongoing eruption, AVO will update the forecast with actual observations (eruption start time and duration, plume height) as they become available.

View the current airborne ash cloud models for Fourpeaked

Ashfall thickness forecast

The Ash3d model was developed by the USGS to forecast how a volcanic ash plume will interact with wind and where ash will fall out and accumulate on the ground. AVO runs these models twice daily when a volcano is restless by assuming a reasonable hypothetical eruption altitude and duration. The map shows the model results of ashfall thickness for areas that are likely to be affected, if one were to occur. During an ongoing eruption, AVO will update the forecast with actual observations (eruption start time and duration, plume height) as they become available, and these plots will be automatically updated. The National Weather Service Anchorage Forecast Office will issue the official ashfall warning product and post them at weather.gov/afc

THESE PRODUCTS MAY NOT BE CURRENT.

During an actual eruption, see National Weather Service forecasts of ashfall:https://weather.gov/afc.

Ashfall Forecast

Click on the X on the graphic (upper right) to expand the map to show the map legend.

Ashfall Start Time

This map shows the modeled estimate of the time it would take for ashfall to begin following an eruption. It corresponds to the ashfall thickness forecast map shown above. This map uses the start time of either the twice-daily hypothetical model runs (time shown in the legend) or the actual eruption start time (if one were to occur). In the case of an actual eruption, the National Weather Service Anchorage Forecast Office will issue the official ashfall warning product that includes the ashfall start time and post them at weather.gov/afc

THESE PRODUCTS MAY NOT BE CURRENT.

During an actual eruption, see National Weather Service forecasts of ashfall:https://weather.gov/afc.

Ashfall Start Times Forecast

Click on the X on the graphic (upper right) to expand the map to show the map legend.
×