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Abstract 
  

An abnormally high number of explosion quakes were noted during the monitoring effort 

for the 2007 eruption of Pavlof Volcano on the Alaskan Peninsula. In this study we manually 

counted the explosion quakes from their characteristic ground-coupled air waves. This study 

makes an effort at better quantifying the number of explosion quakes and how the characteristic 

ground-coupled air waves are affected by wind direction and wind speed. Additionally this study 

investigates how the ground coupled air waves might be used in a monitoring or analysis effort 

by calculating energy release and gas mass release. Over 3.2x104 quakes were recorded. It was 

found that wind direction affects the travel time of the air wave by up to 0.7 seconds depending 

on station location and wind direction. Wind direction and speed, however, are demonstrated not 

to cause an appreciable difference in ground-coupled air wave frequencies or amplitude ratios. 

The energy release from the explosions is calculated to be 3.04x1011 J. and the total gas mass 

(assuming 100% water) released was 729 metric tons. These values are compared to other 

volcanoes in the literature and found to be somewhat lower. Nevertheless, the tracking of 

explosion quakes has the potential to become a valuable member of the seismic monitoring 

arsenal. 
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Chapter One: 

 
Introduction  

 

Pavlof Volcano is one of the most active volcanoes in the Aleutian Range, having erupted 

approximately forty times in recorded history. Historic eruptions from Pavlof have deposited 

measureable ash as far away as Sand Point (95 km). Ash erupted 26,000 years ago from the 

Emmons Lake Volcanic Complex has been found as far away as northwestern Canada (1600 

km), showing that there is the potential for devastatingly large ash plumes from this complex. 

 The danger from eruptions containing ash is expansive. In the near field ash can be 

harmful to plants, animals, and human respiratory systems from both fallout and column 

collapse. In the case of Pavlof, since there is little infrastructure near the volcano, the far field 

effects of ash are more pressing. Ash can be caught in airplane turbines where it is reheated and 

melted, resulting in engine damage or shutdown and potential plane crashes. This occurred in 

1989 when KLM Flight 867 flew through a day old ash cloud from Mt. Redoubt, resulting in 

temporary failure of all four engines.  

 It is important, from a monitoring standpoint, to know when there is the potential of an 

ash plume developing. Waythomas et al. (2006) determined the prevailing wind direction over 

the Cold Bay area to be predominately between northeast and southeast with the peak wind 

direction to be directly east for all altitudes up to 13 km. These wind directions would blow any 

plume towards Anchorage and through heavily traveled airspace. The Northern Pacific hosts the 

main flight paths that connect North America with East Asia (Neal et al., 2009). Approximately 
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10,000 passengers and 90 percent of Chinese imports fly over the Aleutians daily, with yearly 

flight counts at around 50,000 aircraft for these Trans-Pacific flights (Neal et al., 2004; AAWU, 

2015; NOAA, 2008).  The closest airport to Pavlof is located in Cold Bay (40 km west of the 

volcano) and has on average 20 flights per day, with the majority being local air taxi ventures. 

There are several methods currently in use to monitor ash plume development. These 

methods heavily rely on visual inspection of the volcano, either through satellite imaging of the 

plume and/or SO2 concentrations or by pilot reports. The problem with relying on visual based 

methods is that the weather in and around Pavlof and Cold Bay is commonly very cloudy and 

Pavlof is often obscured to line of sight or satellite visuals. The danger with relying on pilot 

reports is that at the speed planes travel by the time they see a plume they might already be too 

close for safety.  

 Therefore, it is desirable to develop a monitoring system that relies on a more weather 

hardy indicator such as seismic signals that may be usable in determining if an ash plume is 

developing. So far a reliable seismic relation to the development of an ash-laden plume has been 

elusive. Common seismic monitoring relies on looking for volcano-tectonic (VT) and long 

period (LP) earthquakes as indicators of building volcanic activity. Although, LP earthquakes are 

difficult to locate they are a common indicator of increasing volcanic activity. During the 2007 

Pavlof eruption the Alaska Volcano Observatory (AVO) catalogue only shows a single 0.2 

magnitude VT earthquake that occurred on September 12th (fig 1), after the peak of the eruptive 

activity, which occurred from August 30th to September 2nd. Another seismic monitoring method 

utilizes Real-time Seismic Amplitude Measurement (RSAM) plots which display the average 

seismic amplitude being recorded. For Pavlof, RSAM is more valuable than VT and LP tracking 

but still does not detail the entire explosive (and possibly ash plume forming) aspect of the 
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eruption. 

 It is the goal of this study to determine if there is a characteristic relation between 

explosion quake ground-coupled air waves, a seismic signal not commonly identified or 

catalogued by observatories, and the energy and mass of gas released by Pavlof during the 2007 

eruption. Determining the amount of gas released by the volcano is the first step towards 

utilizing seismic signals in ash plume development monitoring. It is also necessary to determine 

if atmospheric conditions affect the recording of the explosion's ground-coupled air wave in 

order to determine conditions under which this type of data analysis may be detected and used 

reliably.  

 

Figure 1: Single recorded earthquake in the AVO catalogue during the eruption. This earthquake was a 0.2 
magnitude event. The visible P and S waves as well as a different arrival time pattern differentiate this earthquake 
from explosion quakes (seen in figure 4).   
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Chapter Two: 
 

Literature Review 

 

Geologic Setting 

 The Alaskan Peninsula-Aleutian Island arc is a volcanic arc created by the subduction of 

the Pacific plate beneath the North American plate. The Pacific plate is colliding with the North 

American plate resulting in the subduction of the Pacific plate. Minster and Jordan (1978) 

measured this collision to be occurring at a localized rate of 73 mm/yr. However, the more recent 

NUVEL-1 model looks at a more global scale and models the collision rate to be 53 mm/yr 

(DeMets et al., 1990). The resulting arc spans 2,500 km and consists of approximately fifty 

volcanoes that have been active in historical times with eighty additional volcanic centers that 

show evidence of being active over the past two million years (AVO, 2014).  

  Located at the western edge of the Alaskan Peninsula, Pavlof is a member of the Emmons 

Lake Volcanic Center – a caldera complex that contains six large volcanoes which trend 

northeast to southwest, including: Pavlof, Pavlof Sister, Little Pavlof, Double Crater, Mount 

Emmons, and Mount Hague, as well as many smaller vents and twelve cinder cones named 

alphabetically A-L (Kennedy and Waldron, 1955). This volcanic complex contains three nested 

calderas of Quaternary age. Volcanic ash that can be traced to the most recent of these caldera 

forming events was found 1600 km northeast of the complex in the Dawson area of the Yukon, 

dated to 26,000 years ago (Waythomas et al., 2006). Pavlof is located just outside the North 

Caldera scarp in the northeast corner of the complex (Waythomas et al., 2006). It has been 
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suggested that the entire volcanic complex is fed by a common mid-crustal (20km) magma unit 

(McNutt and Jacob, 1986). 

 Pavlof is located within the Shumagin seismic gap at 55°24.01’N, 161°54.63’W (fig 2) 

(McNutt and Jacob, 1986). It has a snow and ice covered peak with a maximum elevation of 

2518 meters. Pavlof commonly erupts from the northern side of the volcano; however the vent 

location is mobile, and the 2007 eruption occurred on the south-east side of the mountain from a 

newly formed vent located approximately 200 m below the summit (fig 3). A typical eruption is 

Strombolian with a Volcanic Explosivity Index (VEI) of 2-3, including ash production, lava 

fountaining, spatter fed flows, and lahars. During the 1946 mapping of this region Kennedy and 

Waldron (1955) noted that glacial erosion had carved out sections of the volcanic edifice making 

the internal structure visible. This cross section showed lava flow layers alternated with beds of 

other volcaniclastic material in size from ash to bombs and blocks, pointing to a long and 

variable eruption history. Lahars and pyroclastic flows are common in Pavlof's eruptive history 

due to the summit snow and glacial ice that can be melted during an eruption.  

 The chemical compositions of the lavas produced from the volcanoes and cinder cones of 

the Emmons Lake Volcanic Center are andesite to basaltic andesite (52-63 wt % SiO2) 

commonly containing between twenty and thirty percent phenocrysts of feldspar, olivine, 

hypersthene, and augite (Kennedy and Waldron, 1955; McNutt et al., 1991). The groundmass is 

microlitic feldspar, clinopyroxene, and brown glass (Kennedy and Waldron, 1955; McNutt et al., 

1991).   

 Throughout recorded history ash fall has reached several nearby communities including 

Cold Bay (40 km west), King Cove (34 km southwest), Sand Point (95 km southeast), and Unga 
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Island (89 km east) (Waythomas et al, 2006; Kennedy and Waldron, 1955). 

 

Eruptive History 

 Long term volcanic activity on the Alaskan Peninsula is evident from Tertiary aged tuffs, 

such as the Belkofski tuff, as well as intrusive quartz diorite stocks, basaltic necks, and andesitic 

sills that canvas the region (Kennedy and Waldron, 1955). Pavlof's edifice likely accumulated 

during the Quaternary, although a specific age is not established (Kennedy and Waldron, 1955). 

Pavlof's first recorded eruption in 1762 was noted by Grewingk (1850), however early eruption 

records are sparse and there is the possibility that some of them might refer to Pavlof Sister 

(Kennedy and Waldron, 1955). Since 1762, Pavlof has erupted approximately forty times 

roughly every 5-7 years (Waythomas et al., 2006; McGimsey et al. 2011). On average its 

eruptions have lasted for three months. Pavlof has few volcano-tectonic earthquakes, having 

instead, tremor, B-type events and explosion quakes making up the majority of its catalogue 

(McNutt and Beavan, 1981).  

 It has been shown that Pavlof’s eruption patterns are susceptible to long period stress and 

strains resulting in a statistically significantly higher number of eruptions occurring during the 

fall months of September to November (McNutt and Beavan, 1981; McNutt, 1999). It is 

postulated by McNutt (1999) that lava is preferentially extruded during times that the volcano is 

underpinned by compressive stresses.  

The two eruptions prior to 2007 occurred in 1986 and 1996, with a small event in 1990 

that consisted mainly of traces of steam and visible melting of summit snow. The 1986 eruption 

sequence spanned from April to August and was VEI 3 at its maximum, with 5300 recorded 

explosion earthquakes (McNutt et al., 1991). In this eruption the explosions resulted in the 



7 
 

expulsion of volcanic bombs with small amounts of ash being produced (McNutt et al., 1991). 

The 1996 eruption of Pavlof started in September and ended in January 1997, reaching a 

maximum VEI of 2. This eruption was one of the first times where satellite imagery from the 

polar-orbiting AVHRR (Advanced Very High Resolution Radiometer) was used to monitor a 

volcanic eruption in near-real time (Roach et al., 2001). The use of the satellite data during this 

eruption brought to the forefront how poor weather conditions in this area do not always allow 

for visual verification of plume development, therefore highlighting the necessity for continued 

development of remote monitoring efforts.  

 

The 2007 Eruption 

 Nearby communities to the Emmons Lake Volcanic Center include Cold Bay, King 

Cove, and Sand Point. These towns have small populations with robust fishing ventures; aviation 

is the main mode of transport in and out of these areas (Waythomas et al., 2006). Unlike most 

volcanoes - which show seismic activity increases in the days or weeks prior to an eruption - 

Pavlof commonly has rapid eruption onset with little to no seismic precursors. This lack of 

precursory warnings combined with the commonly bad weather and visibility in the Cold Bay 

area results in Pavlof’s eruptions being of particular danger to the many aviation routes that 

traverse this airspace.  

 The seismic monitoring network on Pavlof was first established in 1973 by the Lamont-

Doherty Earth Observatory (LDEO) and operated until 1990. A network was re-established by 

AVO in July 1996 (Roach et al., 2000). During the 2007 eruption there were five short period 

stations functioning within 12 km of the summit. There was one pressure sensor co-located with 

PN7A, however, it was only partially functioning during the eruption. The closest weather 
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station was station PACD, operated by NOAA and located at the Cold Bay Airport, 40 km to the 

west. Satellites are used to monitor for thermal anomalies and plume development. However, due 

to the commonly bad visibility in this area seismic data remains to be the closest and most 

reliable monitoring format available.  

 

 Eruption Timeline 

  The 2007 eruption took place after a repose period of almost 11 years – almost double the 

normal repose time of 6-7 years. Pavlof erupted on August 14, 2007, after less than one day of 

seismic ramp up. In contrast to previous, longer, eruptions this eruption only lasted for thirty 

days ending on September 13, 2007. 

 By the close of Aug 14th, 2007 AVO had raised the Aviation Color Code/Volcano Alert 

Level (ACC/VAL) to Yellow/Advisory due to the rapid increase in seismicity over the first day. 

However, there were no visible indications of eruption from either observers in Cold Bay or by 

satellite (McGimsey et al. 2011). Overnight the Advanced Very High Resolution Radiometer 

(AVHRR) recorded a thermal anomaly, which in conjunction with still increasing seismicity 

prompted AVO to raise the ACC/VAL to Orange on August 15, 2007 (McGimsey et al. 2011). 

Over the course of the eruption over 40 lahars were recorded traveling down the southern flank 

inundating an area measuring 2x106 m3 and entering the sea (Waythomas et al., 2008). A 565 m 

long, spatter fed, rootless lava flow also developed and was visible to individuals living in Sand 

Point as “orange streaks” and “glows” on the southern flank (Waythomas et al., 2008; 

McGimsey et al. 2011), and led to thermal anomalies detected by satellite remote sensing 

techniques. Tremor and repetitive explosion signals indicated that this was a continuous 

Strombolian style eruption (McGimsey et al. 2011). Although the main explosive peak of the 
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eruption was over by September 13th, and this is the AVO given end date of the eruption, the 

ACC/VAL was not decreased from Orange to Yellow until September 20th and not until October 

5th was it reduced back to Green. 

 

 Previous Work on the 2007 Eruption 

 A previous investigation into the 2007 explosion quakes at Pavlof explored the utility of 

coda wave interferometry (Haney et al., 2009). Coda wave interferometry can be used to help 

discriminate between source and path effects. Haney et al. (2009) used the repetitive, emergent 

ground wave that occurs prior to the ground-coupled air wave of the explosions to investigate the 

potential of changing conduit dimensions. In this work only stations PN7A and PV6 were 

utilized and they were low pass filtered below 4 Hz. By determining a master event and cross 

correlation techniques they were able to identify 300-400 explosions per day from August 30th to 

September 11th.  Changes in these quakes’ characteristics were used to estimate changing conduit 

dimensions throughout the eruption (Haney et al., 2009).  

  

Ground-Coupled Air Waves 

 During the 2007 eruption Strombolian explosions were noted on the seismic record and 

visualized in FLIR imagery. These explosions have a distinctive appearance on seismograms. 

They appear as a repetitive, emergent, low frequency ground wave appearing on all stations at 

approximately the same time followed by a higher frequency spike at times which increase with 

station to vent distance. The exact arrival time of the ground wave is difficult to determine due to 

its emergent nature. This time lag corresponds to the velocity of sound waves in air. This 

indicates that the spike is in fact an air wave that has its source at the vent. This pressure wave 
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presses down on the ground as it travels creating the seismic response (De Angelis et al., 2012; 

Sabatier et al., 1986). When this pressure wave is from an impulsive event the seismic station 

records the ground motion as an impulsive ground-coupled air wave spike. The pressure sensor 

co-located at PN7A corroborates the air-wave theory with impulses that show temporal 

alignment with the proposed ground-coupled air wave seismic pulse (fig 4). This type of seismo-

acoustic signal has been studied at Stromboli (Braun and Ripepe, 1993; Ripepe, 1996; Ripepe et 

al., 2001), Karymsky (Johnson and Lees, 2000; Johnson et al., 1998), Sangay (Johnson and Lees, 

2000), Arenal (Hagerty et al.’ 2007), Mt. St. Helens (Johnson and Malone, 2007), Mt. Cleveland 

(De Angelis et al., 2012), Shishaldin (Petersen and McNutt, 2007; Vergniolle et al., 2004), and 

Pavlof (Garces and Hansen, 1998; Garces et al., 2000; Haney et al., 2009; McNutt, 1989; 

McNutt, 1999). 

 

 Source of the Air Wave 

 This air wave is an example of excess pressure – an instance where the pressure 

fluctuates either above or below the ambient atmospheric pressure (McNutt et al., 2015). In this 

study when we refer to the pressure we are talking about the excess pressure. The development 

of the air wave portion of these distinctive signals is one of debate. There exist two different 

ideas behind what is causing the impulsive seismic response: the vibrating bubble theory and the 

bursting bubble theory. However, there is also the possibility that these signals are the result of a 

combination of both of these sources, or that they both may be accurate in slightly differing 

circumstances (Garces, 1997). 
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 Vibrating bubble theory 

 First there is the idea put forth by Vergniolle and Brandeis (1996) that an over-pressured 

bubble at the upper surface of the conduit vibrates before bursting. It is this vibration prior to 

bursting that is hypothesized to cause the recorded pressure waves. They propose that as a slug 

of gas rises through the conduit it becomes over-pressurized. At the magma-air interface the 

rising inertia of the bubble and its over-pressurization cause the bubble to expand past 

equilibrium and subsequently recompress. The model they propose has this cycle of vibration 

occurring once before the skin of magma becomes unstable and bursts. This vibration, rather 

than the bubble burst, produces the majority of the energy released (Vergniolle and Brandeis, 

1994). This model was studied at Stromboli and Etna, both in quasi-permanent states of 

Strombolian eruption (Vergniolle and Brandeis, 1996; Vergniolle et al., 1996). Explosion quakes 

at Shishaldin had dominant frequencies of approximately 1 Hz, closely matching that which can 

be modeled by a vibrating bubble (Vergniolle et al., 2004). 

 Bursting bubble theory 

 The alternative theory behind the source cause of the ground coupled air wave is that 

when a Strombolian type gas bubble breaks at the vent-air interface that the explosion sends out 

a high frequency pulse which is recorded as a spike. The bursting of the bubble at the vent-air 

interface is analogous to a balloon breaking. The frequency of a balloon bursting is inversely 

proportional to its radius with high frequencies characteristic of small radii, e.g. 30 Hz for a 5 m. 

radius bubble (Vergniolle et al., 2004). In addition to this high frequency spike, the short 

duration of the impulsive event points to an explosive release, assumed by Johnson et al. (2003) 

to be the result of an impulsive thrust force, such as that from a bubble bursting at the vent. 

McNutt (1986) also categorizes these ground-coupled air waves as an ‘air-shock phase,’ the 
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result of an explosive ‘pop’.  Braun and Ripepe (1993) used seismic gun experiments to 

determine that the sound pulse is ‘pushing’ on the ground as it travels. This ‘push’ is enhanced 

by the unconsolidated material that commonly covers volcanic regions, creating a favorable 

impedance contrast for high energy transmissions between the air waves and the ground (Braun 

and Ripepe, 1993). McNutt (1986) also utilized travel-time curves to determine that this air-

shock phase was traveling at the speed of sound in the atmosphere, concluding that it was in fact 

an atmospheric rather than a ground wave. In studying the influence of gas release on seismic 

signals at Stromboli Volcano, Ripepe (1996) suggested that those seismic signals that have a low 

frequency component followed by a high frequency component with a simultaneously recorded 

air-pressure signal are the result of a single bubble of gas exploding at the vent-air interface.  

 

 Source of the Ground Wave 

The emergent ground wave that appears before the ground-coupled air wave lacks clear P 

and S waves. It is, however, repetitive in nature, with each station showing the same phase 

characteristics for each event. Johnson et al. (2003) give two possible explanations for the 

existence of this type of seismic energy preceding the air wave. First, they determine that it 

might be related to the explosion source located at some depth within the conduit. A second idea 

is that it might be related to fluid motion or the cracking of rock prior to the explosion. Another 

theory is that the low frequency component is considered to be the portion of energy that is 

emitted into the ground at the time of bubble burst (Braun and Ripepe, 1993). The seismic 

energy that is perpetuated through the ground is attenuated by the unconsolidated cone of the 

volcano, resulting in the low frequency signature (Johnson et al., 1998).  For our analysis we 

assume that the seismic and acoustic sources are co-located and the seismic wave develops from 
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the energy being partially partitioned into the ground (e.g. Petersen and McNutt, 2006; Hagerty 

et al., 2000). 

 

Previous Work with Ground-Coupled Air Waves 

 The attraction to utilizing these ground-coupled air waves comes from their distinctive, 

and therefore easy to pick, appearance and their compatibility with infrasonic measurements. De 

Angelis et al. (2012) were able to locate large explosions from Mt. Cleveland Volcano using the 

Okmok seismic network, 120 km. away, by utilizing ground-coupled air waves. Additionally, 

since ground-coupled air waves travel through the atmosphere, which has a more simplistic 

velocity structure than the ground, they suffer less from path effects than the associated seismic 

phases (Petersen and McNutt, 2006). In certain conditions they can be detected over large 

distances due to tropospheric ducting (De Angelis et al., 2012). In cases where the stratified 

atmosphere amplifies the waves of strong explosions at long distance it has also been noted that 

near to the source a ‘shadow-zone’ can occur (Johnson and Malone, 2007). This was seen in the 

1980 eruption of Mt. St Helens where ground-coupled air waves appear at distance but within the 

first few tens of kilometers they do not (Johnson and Malone, 2007). Within several kilometers 

of the volcano however, tropospheric ducting such as this is less likely to occur and it is 

reasonable to assume homogeneous atmospheric conditions. De Angelis et al. (2012) utilized a 

specialized short-term average / long-term average (sta/lta) detector applied to data from the 

Okmok network to detect the explosions from Mt. Cleveland. By configuring the sta/lta detector 

to account for the slower air wave travel time and check for the expected move out between 

stations as well as utilizing local and regional infrasonic networks they were able to detect 20 

‘hidden’ explosions. The definition of a ‘hidden’ explosion is one that was not detected by 
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satellites or by other monitoring methods, potentially due to cloud cover (De Angelis et al., 

2012).  The De Angelis et al. (2012) code was tuned to work for those values that would result 

from a Mt. Cleveland explosion reaching the Okmok network. They state that with an eruption 

smaller than VEI 3, of which the Pavlof 2007 eruption was, the explosion signals generated are 

unlikely to be recorded outside of a local network within several kilometers of the vent (De 

Angelis et al., 2012).  

  Johnson and Lees (2000) looked at degassing events at Karymsky Volcano in Russia and 

Sangay Volcano in Ecuador. They recorded short and impulsive onsets of an air wave that were 

associated with temporal acoustic pressure sensor records. They associated these impulsive 

recordings with gas explosions located at the vent. One key observation made by Johnson and 

Lees (2000) was the considerable scatter in the ratio of seismo-acoustic energy as determined by 

plotting the normalized values of seismic amplitude (velocity) against the acoustic sensors 

amplitude (pressure). They list several reasons that might account for this scatter, including: (1) 

wind/weather, (2) depth of explosion source in conduit, (3) variable amounts of debris 

overlaying the conduit that might absorb the acoustic energy, and (4) preferential coupling of the 

energy into either the air or ground depending on the magma’s impedance (Johnson and Lees, 

2000). 

When working with ground-coupled air waves it is necessary to account for atmospheric 

conditions that may affect how the air wave travels. This includes wind direction and 

temperature. The average daily temperature range at Pavlof over this time was only 4.4oCelsius.  

Johnson et al. (2003) calculated that for the temperature fluctuations at Karymsky to influence 

the air wave travel time that they would need to have a range of 24o Celsius. In their 

investigations they found this range to be implausible, and therefore they focused, as we will, on 
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wind direction. Johnson et al. (2003) determined that wind direction could alter the apparent 

acoustic velocity of the wave, and utilized a 0.5 s. range on their origin times to account for this. 

We will investigate further to determine a more exact range depending on station locations and 

wind directions.  

 

Figure 2: Location map of Emmons Lake Volcanic Center. Located at the end of the Alaskan Peninsula, Pavlof is a 
stratovolcano in the Emmons Lake Volcanic Center. Image from Waythomas, Alaska Volcano Observatory/U.S. 
Geological Survey.  
 

 

Figure 3: Location of the 2007 crater. Located on the southeast face of the volcano, the crater is 
approximately 50 m wide and located 200 m from the summit. Image edited from Waythomas, Alaska Volcano 
Observatory/U.S. Geological Survey.  
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Figure 4: Example of ground-coupled air waves. The red arrows point to the high frequency, impulsive 
ground-coupled air waves. The blue stars are located over the repetitive, emergent, ground phase used in our 
measurements. The green oval is on the pressure sensor co-located with PN7A and shows the temporally aligned 
pressure pulse with the ground-coupled air wave on PN7A. The stations are ordered from the top down with 
increasing distance from the volcano.  
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Chapter Three: 
 

Procedures and Methodology 

 

        AVO digitally recorded telemetered seismic traces from five stations surrounding Pavlof 

during the 2007 eruption sequence (fig 5). PN7A, PS1A, PVV, and HAG are one component, 

short-period, Mark L-4 1 Hz seismometers with a 100 sample per second rate. PV6 is a 3 

component, short-period 2 Hz, L22D seismometer also with a sample rate of 100 samples per 

second (table 1). All five seismometers were actively recording throughout the 2007 eruption, 

except for a few periods of signal drop out which occurred most notably on September 7th across 

three stations - HAG, PVV, PS1A - for approximately 10.5 total hours per station. PS1A 

malfunctioned for the first 9 days of the eruption and PN7A malfunctioned for 22 hours on 

August 19th (Appendix A). The pressure sensor co-located at PN7A had noise issues for the 

majority of the eruptive period, however; there are several times that the pressure sensor did 

reliably record the pressure changes associated with the explosion quakes.   

 Haney et al. (2009) previously used cross correlations of the repetitive, emergent, ground 

wave at the northwest stations, on the radial component of PV6 and the vertical component of 

PN7A to tabulate the number of explosions per day. For this study we choose to look instead at 

the ground-coupled air wave as it appeared across all five functioning stations. This allowed us 

to identify a higher number of total quakes that (1) did not appear as clearly on the northwesterly 

stations and (2) that occurred during times of high activity and/or wind noise where the repetitive 

ground waves were obscured yet the air wave spikes were still visible. The vertical components 
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of these seismograms were manually inspected in 40 second intervals for explosion quakes. No 

frequency filter was initially utilized. Explosion quakes were identified by the discrete air wave 

and higher frequency as well as the separation in arrival times of the air wave between stations 

which follow the speed of sound in air (fig 6). Once identified the clearest signal time was 

manually recorded to the nearest second along with the station name. The arrival times were 

corrected for air travel time to determine origin times. These corrections were different for each 

station in reference to the distances from the 2007 vent to each station utilizing the speed of 

sound waves in air of 320m/s. For our calculations we utilized the assumption that the explosions 

originated at the interface of the conduit and atmosphere at the vent opening. The 2007 vent was 

located on the southeast side of the volcanic edifice, farther down the flank from previous 

eruptions. We plotted the explosion quake data to show rate per day, hour, and minute (fig 7). 

From the collected signal times we wrote a MATLAB code utilizing the Waveform Toolbox 

(Reyes and West, 2011) that gathered and recorded each station’s amplitude for each explosion. 

This code and a more detailed description of its process can be found in Appendix B.  

 By mining the AVO eruption response logs we were able to gather ash and plume data 

from the variety of sources reporting to AVO at that time, including: pilot reports (PIREPS), 

significant meteorological reports (SIGMETS) from NOAA, AVHRR (Advanced Very High 

Resolution Radiometer) satellite images, ASTER (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer) images, photographs, webcam images, and visual reports from 

community members near Pavlof. These data were then plotted using different symbols 

according to reporting style (fig 8).  
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Wind 

  In addition to the seismic and plume data we looked up historical weather catalogues for 

Cold Bay in order to determine the atmospheric setting of the eruption. This data was gathered 

from the 1-minute ASOS (Automated Surface Observing System) data through the National 

Oceanic and Atmospheric Administration (NOAA).   

In order to determine how wind affects the recording of explosion quakes we looked at 

travel times, frequencies, and amplitude ratios in relation to wind direction. We took the wind 

directions from the ASOS data and divided them into 45 degree bins with the eight main 

compass directions at the centers of each bin. When plotting out the wind directions (fig 9) it 

became clear that the four main wind directions during this time period were from the southeast, 

west, north, and northwest.  Since the times registering north and northwest were mainly 

prominent over the same period and fluctuated rapidly between the two we choose to group them 

together into a north/northwest designation for these analysis. 

        Taking a sample of explosion quakes from times during each of these primary wind 

directions we measured travel time differences. We first manually measured the time between 

the explosion quake spike and a prominent repetitive ground phase (fig 4). The ground wave that 

appears before the explosion quake spike is emergent and therefore has no clear P or S wave. 

However, since the ground waves are repetitive it is possible to use one of these repetitive phases 

for these measurements. In order to see if wind velocity was a factor we needed to reference the 

air wave travel times to the origin time rather than to the arbitrary, yet clear ground wave phase. 

However, since the origin time cannot be precisely determined from P or S waves we must 

calculate an inferred origin time to work with. To do this we first choose a reference event 

(September 2nd at 14:07:40) which occurred during a time of SSW wind direction and the wind 
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speed was at 1 knot. This direction combined with the low wind speed allows us to assume that 

the station recorded air waves in this event were not affected by either wind direction or speed. 

Using station HAG where the air wave was clearest we back calculated what the origin time of 

the event would have been by using the speed of sound in air and the distance from the vent to 

station HAG. We then took the difference between this origin time and the prominent ground 

phases on each station and used this as a correction factor for the air wave travel times. We 

grouped these travel times according to wind direction and took an average for each station and 

each wind direction. Theoretically the differences in wind direction and velocity should result in 

faster arrivals when the wind is blowing towards the station and slower arrivals when the wind is 

blowing away from the station and towards the vent. We calculated theoretical travel time values 

for each station by using the average wind speeds and directions. By comparing the measured 

and theoretical, calculated values we are able to determine if the wind direction and speed have 

an effect on the travel time of the air wave (fig 10). 

 In order to determine if the wind had an effect on the frequency of the ground-coupled air 

wave we plotted the frequency spectrum of the ground-coupled air wave. By taking a 5 second 

window - 2 seconds before and 3 seconds after - around the main amplitude spike, we guaranteed 

that the entire wave was captured by the spectra. The main frequency peak was then recorded 

and plotted into 1 Hz bins to determine if wind direction forced any trends in frequency content 

(fig 11). Examples of these spectra can be found in Appendix F. 

 Garces et al. (2000) hypothesize that the ratio between ground-coupled air wave 

amplitude and ground wave amplitude has the potential to be used to monitor magmatic gas 

content. To examine this for our dataset we plotted the amplitude ratios: color coded to wind 

direction, and size coded to wind speed in order to see if there was any trend. The same 
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prominent, repetitive, ground phase was used for the ground wave amplitude as was used in the 

travel time difference measurements. Linear regressions were plotted for each wind direction 

group and for the set of ratios as a whole (fig 12).  

 

Gas 

 The ground-coupled air waves recorded at Pavlof show a higher average frequency than 

those recorded at Shishaldin, suggesting that they might result from bursting bubbles rather than 

vibrating bubbles (Vergniolle et al., 2004). For this investigation we assume bubble burst rather 

than bubble vibration as the air wave source. In order to calculate the energy or gas mass being 

released by these explosions we must first know the pressure fluctuation resulting from the 

bubble burst that created the ground-coupled air wave. Garces et al.’s (2000) looked at a similar 

problem where they determined the vertical ground velocity resulting from a pressure wave of 

given characteristics. Following is Garces et al.’s (2000) original equation for a sound wave 

incident to the ground at the grazing angle: 

  𝑣𝑙𝑙 =  𝑝𝑜
𝜌
�−𝛼1𝑊𝐿𝑒−𝑗𝛼1𝑧 +  𝜉𝑊𝑇𝑒−𝑗𝛽1𝑧� exp 𝑗(𝜉𝜉 − 𝜔𝜔)    (1) 

where: 𝑣𝑙𝑙 is the vertical particle velocity (m/s) recorded on the seismometer, 𝑝𝑜 is the pressure 

(Pa) needed to create the recorded velocity response, 𝜌 is the density (kg/m3), 𝛼1 is the vertical 

acoustic wavenumber (1/m), 𝛽1 is vertical wavenumber (1/m), 𝜉 is horizontal wavenumber 

(1/m), 𝜉 is the wavelength (m), 𝜔 is the period (s), 𝜔 is the angular frequency (1/s), 𝑊𝑇 is the 

transverse transmission coefficient, and 𝑊𝐿 is the longitudinal transmission coefficient (Table 2). 

The equations for 𝑊𝐿 and 𝑊𝑇  can be found in Appendix C and are from Brekovskikh (1980). 

Since we have the ground velocity from the seismometer amplitude we will use this equation to 

solve for the needed pressure (𝑝𝑜) to create this velocity. 
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The ground-coupled air waves recorded show retrograde elliptical motion (fig 13) 

indicating that they are Rayleigh waves. Although Garces et al (2000) states that these equations 

are only viable for body waves we justify the use of the equation on the following assumption: 

since the ground surface located at the seismic sensor is not an idealized flat plane it is likely that 

the wave intersecting the ground surface is being transferred into the ground as both a P and an 

Sv wave. The Rayleigh wave-like motion can be accounted for as an interference of these two 

wave motions.  

 Once we have the pressure at the seismic station we can extrapolate back to what it would 

have been at the source rupture using the 1/r pressure decay law. We use the radius of the gas 

bubble as the source radius. In order to determine this radius we take the average frequency of 

the ground-coupled air waves at station PN7A and use ¼ wavelength. One quarter of the period 

is the initial rise time of the explosion, causing the initial pressure fluctuation. This rise time can 

be related to the wavelength where ¼ wavelength would be equivalent to the bubble’s radius 

immediately prior to bursting (11 m). From the calculated source pressure and initial bubble 

volume we are able to calculate the kinetic energy released from explosions during the eruption: 

      𝑃𝑃 = 𝐸     (2) 

where 𝑃 is the source pressure (Pa), 𝑃 is bubble volume (m3), and 𝐸 is kinetic energy (J). The 

total mass of gas released is calculated by using the ideal gas law: 

      𝑛 = 𝑃𝑃
𝑅𝑇

      (3) 

where 𝑛 is the number of moles of gas released, 𝑃 is the source pressure (Pa), 𝑃 is bubble 

volume (m3), 𝑅 is the gas constant (8.3145 𝐽
𝑚𝑜𝑙𝑚 𝐾

) and 𝑇 is temperature (K). The temperature 

used was 630o Celsius, determined from FLIR images taken on August 18th (Read, 2007). After 

we have calculated the number of moles of gas we have to make an assumption on gas 



23 
 

percentages. The plume for the 2007 eruption of Pavlof was recorded as being mainly composed 

of steam and small amounts of ash (Waythomas et al., 2008). Therefore we can assume that all 

the gas released was water. From the number of moles of water we can calculate the total mass 

of water exsolved by the volcano. By calculating the energy/gas mass of each explosion event we 

can look at the cumulative release history of the eruption.  

A Python code, given in Appendix D, was written and used for these calculations. The 

results of this code are highly sensitive to the set of variables values chosen for the Garces et al. 

(2000) equation. We have worked to make our assumptions reasonable.  

The angles for θ and θ1 were geometrically calculated using the distance and elevation 

differences from the summit to station. For the density of air (1 kg/m3), the ground density (2700 

kg/m3), the speed of a sound in air (320 m/s), the P wave velocity in shallow, unconsolidated 

ground tephras (1500 m/s), and the S wave velocity in shallow, unconsolidated ground tephras  

(380 m/s), we use the same values for volcanic areas used by Garces et al. (2000) in their original 

paper. The velocity values for the P and S waves in the unconsolidated ground tephras are an 

estimation. The velocity of these waves in unconsolidated material at the ground surface is 

highly variable and changes both laterally and with depth. The values used here were determined 

by Garces et al. (2000) in his original use of this equation and due to lack of better measurements 

we have chosen to use them as well. 

We used the amplitude values for station PN7A for these calculations. PN7A was co-

located with the pressure sensor. Although the pressure sensor suffered from noise and 

mechanical issues for the majority of the eruption there were several instances where the 

explosion quakes ground-coupled air wave appeared on the pressure sensor as well. These 

instances allowed us to compare the pressure output from equation (1) with the direct pressure 
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measurement from the sensor. The calibration of the pressure sensor is 35 counts per Pascal (G. 

Tytgat, personal communication). The calculated pressures from equation (1) did not match with 

the pressures recorded by the pressure sensor. In order to bring the calculated pressures in line 

with the pressure recorded by the sensor we calculated an average multiplicative coefficient that 

when applied to the calculated measurements from equation (1) resulted in a close match to those 

pressures recorded directly by the pressure sensor (Table 3). This coefficient was 5.5.  

The average frequency of the ground-coupled air wave was chosen to be 7 Hz. This value 

was determined by looking at the plots for the main frequency component of the ground-coupled 

air wave. The main frequency for station PN7A was 7 Hz, independent of the wind direction. We 

decided to use only a single frequency to maintain the speed and simplicity of the code. In order 

to change the frequency for each calculation the code would have to actively perform the Fourier 

transform for each of the 3.2x104 events and pick the peak, greatly increasing the computational 

power and time needed to run the code. The frequency is consistent with previously measured 

frequencies of explosions at Stromboli of 3-8 Hz (Ripepe et al., 1996). 

This frequency is used to calculate the radius of the bubble at the source. Using a single 

frequency is further justified by an argument put forth by Vergniolle et al. (2004). Using 

laboratory experiments they determined that bubbles in well-developed slug flow – such as that 

seen in Strombolian activity like that present in the Pavlof 2007 event – are approximately 

constant in size, and occupying a large proportion of the main conduit (Vergniolle et al., 2004). 

For our calculation of the radius we directly use the frequency, so it would be a logical 

assumption to use the same frequency in order to maintain the bubble radius.  

There are no direct measurements of the width of the conduit at the vent-air interface. 

However, using FLIR images of the lava extrusion and photographs of the crater after the 
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eruption, it is possible to determine the crater size and then extrapolate back to determine if our 

bubble radius is reasonable. Using a frequency of 7 Hz we get a bubble radius of ~11 m. This 

gives a bubble diameter of 22 m and following Vergniolle et al.’s (2004) conclusion that the 

bubble takes up a majority of the conduit, this would require a conduit diameter of approximately 

25 m to allow for the bubble and surrounding magma skin. By examining the FLIR images and 

photographs of the crater we can determine that the summit crater is approximately 50 m in 

diameter (fig 14). Since the crater is likely some variation on a conical shape the vent-air 

interface that marks the top of the conduit would have to be smaller than 50 m. Therefore, a 

conduit diameter of 25 m. and a bubble radius of 11 m. is logical.  

The volume of the exploding bubble is also directly calculated from this radius. There is 

no evidence of fire-fountaining, which would be manifested in codas of longer duration, and 

therefore no reason to assume the elongated gas slugs related to gas jetting. Since the explosion 

quakes recorded on the seismometers are of short duration we have assumed a spherical bubble 

model with an impulsive energy release (Johnson et al., 2003).  

 

Sources of Error 

 The equations used to calculate energy and mass of gas released by the explosions are 

influenced by a few key variables. When writing this code we worked to make the most 

reasonable estimation of these variables and whenever possible utilized measured values. Two 

variable choices had the potential to greatly affect these calculations. The first is the chosen 

frequency. We chose to not calculate and pick the peak frequency for each event and instead use 

an average peak frequency. This frequency is utilized to calculate six of the variables in equation 

1 including: the vertical acoustic wavenumber, the horizontal acoustic wavenumber, the vertical 
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wavenumber, the wavelength, the period, and the angular frequency. Additionally, the frequency 

was used to calculate the volume of the bubble used in the mass of gas calculation. In order to 

test how much of an effect this chosen frequency had on the results we ran the code with a range 

of frequencies from 1 Hz to 15 Hz and examined the trends. Both the mean energy and the mean 

water content per explosion show a decrease with increasing frequency with a range of 

approximately 2.5 orders of magnitude.  This pattern and range is also seen with the total 

cumulative energy and total cumulative water content for the variation in frequency.  

 The second variable that has a large uncertainty is the temperature of the magma at the 

vent-air interface. The value used for this study was the highest recorded value by a FLIR 

camera during a helicopter flyover. Although this value (630 oC) is a very low estimate, as it is 

the only actual measurement made it is the one we chose to use. In order to test how much of an 

effect this chosen temperature had on the results we ran the code with a range of temperatures 

from 500 oC to 1500 oC in 100 oC increments and examined the trends. Since the temperature is 

not a factor in the energy calculation the energy values remained the same for the total range of 

tried temperatures. The water content per explosion shows a slight decrease with increasing 

temperature. This same trend is better illustrated in the total cumulative water released by the 

eruption, as temperature increases the total water released decreases covering a range of half an 

order of magnitude. Plots showing all of the relationships stated above can be found in Appendix 

F. 
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Figure 5: Station location map. The summit of Pavlof is represented by the red triangle. The seismic stations are blue 
squares. 
 
 
 
 
Table 1: Seismic and Pressure Station Specifications 
 
Station Latitude Longitude Elevation (km 

above sea 
level) 

Channel Type Sample 
Rate 
(Hz) 

Distance 
to Vent 
(km) 

HAG 55.3170 -161.9045 0.5160 EHZ Mark L-4 1 
Hz 

100 11.2 

PVV 55.3732 -161.7919 0.1730 EHZ Mark L-4 1 
Hz 

100 8.40 

PS1A 55.4201 -161.7437 0.2830 EHZ Mark L-4 1 
Hz 

100 9.30 

PV6 55.4528 -161.9205 0.7470 EHZ L22D 2 Hz 100 4.40 
PN7A 55.4329 -161.9973 0.8380 EHZ Mark L-4 1 

Hz 
100 7.06 

PN7A 55.4329 -161.9973 0.8380 BDF Pressure 100 7.06 
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Figure 6: Distance-time plot of the ground-coupled air waves. The slope of the line is 320 m/s, showing that the 
wave causing this phase was traveling at the speed of sound in air. O.T. is the origin time of the blast. 
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Figure 7: Explosion quake rate plots. The top plot is number of explosion quakes per day, maximum at 5500 on 
8/31. The center plot is the number of explosion quakes per hour maximum at 350, and the bottom plot is the 
number of explosion quakes per minute, with a maximum at 19. 
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Figure 8: Ash/ plume reports. Different symbols correspond to the different reporting methods. Points that have an 
altitude of 0 are qualitative reports that noted that a plume was present but did not provide an estimate of height. 

      

 

Figure 9: Wind direction each minute. Taken from NOAA ASOS data from Cold Bay and binned into 45 degree 
units corresponding to the eight main compass directions. This plot shows the patterns of what direction the wind 
was coming from. The wind data is recorded in one minute intervals. 
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Figure 10: Average time between prominent ground phase and air wave. The top left plot shows the measured 
average time between the assumed origin time and the ground-coupled air wave. The travel-time differences 
between wind directions at different stations range from 0.4 to 0.7 seconds. The top right plot shows the calculated 
travel-times between the vent and station, using the average wind speed and direction for the selected times. The 
bottom frame shows these values plotted per station on a rose diagram. The thick black line shows the measured 
value, the thin red line shows the calculated value. The difference in lengths of the red and black lines shows the 
difference between calculated and measured values. Rose diagram circles are 1 second increments. For better 
visualization of the small scale differences the data is zoomed in to show only the last few seconds where the time 
difference occurs. 

N 



32 
 

Figure 11: Compilation of main frequency of ground-coupled air wave. At each station the samples are divided by 
wind direction. The color scale for wind direction is the same across plots and is given above. These plots indicate 
that the frequency of the ground-coupled air wave is independent of wind direction. 
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Figure 12: Ground wave and ground-coupled air wave ratios. The left column shows the linear regression for all of 
the amplitude measurements at the station. The right column shows the linear regressions (color coded to match 
wind direction) for each wind direction at each station. The R2 values and slopes for these linear regressions are 
given in Table 6. 
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Figure 13: Three components of PV6. The 90o offset between the radial and vertical components is indicative of a 
Rayleigh wave. The bottom three plots show retrograde elliptical particle motion. 
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Table 2: Equation Variables 
 
Variable Definition Units 

𝑣𝑙𝑙 Vertical particle velocity m/s 
𝑝𝑜 Pressure Pa 
𝜌 Density of the ground kg/m3 
𝛼1 Vertical acoustic wavenumber 1/s 
𝛽1 Vertical wavenumber 1/s 
𝜉 Horizontal wavenumber 1/s 
𝜉 Wavelength m 
𝜔 Period s 
𝜔 Angular frequency 1/s 
𝑊𝑇 Transverse Transmission Coefficient - 
𝑊𝐿 Longitudinal Transmission Coefficient - 
𝑃 Pressure Pa 
𝑃 Volume m3 

𝐸 Energy J 
𝑛 Moles Moles 
𝑅 Gas Constant 𝐽

𝑚𝑚𝑚𝑒 𝐾
 

𝑇 Temperature K 
 
 
 
 
Table 3: Calibration Coefficient. Average ratio (last column) was 5.5 so that was used for our calibration coefficient. 
 
Sample Pressure 

Amplitude 
(Counts) 

Pressure 
from sensor 
(Pa) 

Seismic 
Amplitude 
(nm/s) 

Seismic Pressure 
from calculation 
(Pa) 

Ratio 
(Pressure/Seismic) 

1 350 10 25000 1.95 5.13 
2 250 7.14 25000 1.95 3.66 
3 120 3.43 6000 0.47 7.30 
4 140 4 7000 0.5 8 
5 60 1.71 5000 0.4 4.28 
6 300 8.57 25000 1.95 4.39 
7 200 5.71 2000 0.94 6.08 
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Figure 14: FLIR image of lava flow. This image gives approximate measurements of the lava flow on the southeast 
face of Pavlof on August 18th. Image from Wessels and Read, Alaska Volcano Observatory/U.S. Geological 
Survey.  
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Chapter Four: 
 

Results 

 

        The rate of the explosion quakes varied throughout the eruption. There were 31 days of 

explosion quakes with the first explosion quake on August 14th at 2:54am UTC and the last 

explosion quake on September 13th at 3:14pm UTC. The maximum number of explosions that 

occurred in any one day was 5500, the per hour maximum was 350, and the highest number per 

minute was 19 and occurred on August 19th (fig 7). The rate of explosions per day increased 

reaching a peak rate per day on August 31st, 18 days into the eruption, and then continued at a 

decreasing rate for 13 days, forming a distinct peak. In contrast to the per day rates, the per hour 

plot shows two distinct peaks of activity with one peak showing rates of over 300 explosions per 

hour at the start of the eruptive phase followed by a slight lull and then another peak of over 300 

explosions per hour on Aug 31st. When looking at the rate of explosions per time the period 

leading up to the peak rate appears to follow an approximately exponential increase. However, at 

the tail end of the eruption the explosion quakes seemed to suffer a sudden drop off rather than 

an exponential decay. This suggests that the conduit was being held open by the gas pressure and 

that when the explosions releasing that pressure stopped that the upper conduit pinched shut. 

 

Plume 

 The 2007 eruption of Pavlof generated generally weak ash plumes, earning it an official 

ranking from AVO of VEI 2. The plume was not sustained for long periods of time. As visual 
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reports and PIREPs indicated the plume was weak, mostly steam, and tended to dissipate rapidly 

as it was blown south out over the Pacific. This can be seen in both the ASTER and AVHRR 

images of the plume (fig 15, fig 16). Often there were conflicting viewpoints on if there was a 

plume or rather if what was seen was just an orographic cloud. The photographic evidence shows 

that a medium sized plume did in fact develop on August 30th (fig 17). This plume was estimated 

to reach 20,000 ft (~6 km). This is 12,000 ft (3.6 km) above the 8000 ft (2500 m) summit of the 

volcano. The maximum heights occur in a six day window that has the highest density of plume 

reports of any time segment (fig 8). This time window also corresponds well with the peak 

period of explosion quakes (Aug 28th – September 2nd). During the eruption, plume reports 

varied to include everything from small summit level ash and steam puffs to the larger plumes 

seen on August 30th. One regional flight from Cold Bay to Anchorage was cancelled due to ash, 

indicating that a dangerous level of ash was perceived to be possible.   

As discussed earlier, the plume and ash data were gleaned from the AVO eruption logs. 

Ash was determined to be present in the plume via AVHRR remote sensing as well as reports of 

lighting in the plume. Lighting occurs in volcanic plumes due to charge differentials, 

fragmentation of silica rich ash particles, and water/ice interactions (McNutt and Williams, 

2010).  Due to the inherent variability in reporting styles, units, and precision these data are 

difficult to analyze (table 4). There are no SO2
 data available, visual reports describe mainly 

steam and small amounts of ash. The rate of explosions is positively correlated with the number 

and height of plume reports. Thus, it is reasonable to conclude that there is a connection between 

the explosion quakes and the gas release and fragmentation processes which result in an ash and 

gas plume. 
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Wind 

 The weather of the Alaskan Peninsula makes effective, on location, monitoring difficult. 

Pavlof is often cloud covered and storms with high winds are a common occurrence. This makes 

visual monitoring and verification of ongoing activity challenging. Weather patterns do not 

affect seismic ground waves, but the state of the atmosphere does have the potential to affect 

how an explosion quake air wave travels through the air. 

        The wind data showed a fluctuation in direction, alternating between southeast and west 

approximately every 48 hours during the first third of the eruption. The wind patterns then 

changed for around six straight days, consistently blowing from the north, northwest. This 

pattern change temporally matches the peak eruptive phase – August 27th to September 2nd. 

Starting on September 2nd the wind direction returned to fluctuating between southeast and west. 

The wind speeds varied greatly during the eruption from less than 5 knots to greater than 40 

knots (fig 18). One knot is equivalent to 0.514 m/s. During the main eruptive peak, and time of 

highest plume development, the wind was generally less than 15 knots. These speeds are 

considered to be a moderate breeze or less on the Beaufort Naval scale (Table 5). Starting on 

September 2nd the wind speeds became more variable and more intense with peak wind speeds 

reaching gale level designations on September 10th.  

 By looking into the travel times of the ground-coupled air wave, the effects of wind 

direction start to become visible (fig 10). Station HAG, which is located south of the vent has a 

0.7 second increase in average travel times between when the wind is blowing from the 

north/northwest (towards the station) and when it is blowing from the southeast (towards the 

vent). This pattern is repeated with station PVV, located southeast of the vent, where there is a 
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0.6 second increase between when the wind is blowing from the north/northwest (towards the 

station) and blowing from the southeast (towards the vent). PS1A is also east-southeast of the 

vent and shows this same trend, with a 0.5 second increase between north/northwest (towards the 

station) and southeast (towards the vent). The stations that are located north and west of the vent, 

PV6 and PN7A show similar commonalities with wind direction and travel time. PN7A is 

located west-northwest of the vent and shows a 0.4 second increase between winds from the 

southeast (towards the station) and winds from the west (towards the vent). PV6 echoes this 

pattern with a time increase of 0.4 seconds between when the wind is blowing from the southeast 

(towards the station) and when it is blowing from the west (towards the vent).  

By comparing these measured values to the theoretical travel times, calculated using the 

sample periods’ average wind speed and direction, we observe that the measured data follows the 

same pattern of variable arrival times as the calculated data (fig 10). The measured travel time 

values differ from those calculated by up to a few seconds, with the calculated values being 

consistently faster than the measured. The largest difference in calculated and measured times 

occurs on station PV6 with a difference of 2.7 seconds between the calculated and measured 

travel times for when the wind is coming from the west. This could be the result of topography, 

the vent is on the southeast side of the edifice, therefore the sound wave would have to travel 

over or around the summit to reach station PV6, we did not account for the possibility of this 

additional time in our measurements. Additionally this time difference may be the result of 

measurement errors, at PV6 the ground-coupled air-wave arrivals occur during the emergent 

ground wave leading to a smaller amplitude difference and the air wave being more difficult to 

pick.  
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Although the absolute travel times vary the between calculated and measured, both of the 

plots show that when the wind is blowing towards the station the air wave arrives faster and 

when the wind is blowing away from the station and towards the vent the air wave has a longer 

travel time. Knowing the effects of wind directions and speeds on travel times is important for 

future detection and monitoring attempts. Due to availability for this study we only utilized 

ground based wind measurements. Weather measurements made closer to the volcano and 

through a variety of altitudes could only enhance the travel time analysis. However, since the 

stations in this study are close to the vent it is unlikely that the upper atmosphere would affect 

the waveforms to an appreciable amount.  

 In addition to understanding travel time variations, it is important to know if the 

frequency content of the recorded ground-coupled air wave is visibly altered by different wind 

directions. As can be seen in Fig 11 the main frequency peaks of the ground-coupled air wave do 

not change with prominent wind direction. The main frequencies recorded vary depending on the 

station, but do not vary based on wind direction within the same station. Stations PN7A, PV6, 

and PS1A all show a main frequency concentration between 5 and 10 Hz. Stations HAG and 

PVV also show frequencies within this band but additionally have both higher 14-16 Hz and 

lower 2 Hz prominent frequencies as well. These frequencies correspond well to the previous 

investigation of the 1986 eruption at Pavlof by McNutt et al. (1991) where the ground-coupled 

air waves were determined to have main frequencies in the 10-15 Hz band. By looking at the 

entire frequency spectra of the 2007 explosion quakes, it can be noted that spectral content in this 

band (10-15 Hz) is present at all stations. 

 Garces et al. (2000) discusses how variations in ground-coupled air wave and ground 

phase amplitudes might prove useful in seismically monitoring volcanoes. In order to test if these 
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amplitudes were affected by wind direction or speed the ratio of ground-coupled air wave 

amplitude and ground wave amplitude were plotted with colors corresponding to wind direction 

and point size corresponding to wind speed in knots (fig 12). It is possible to determine if there is 

a relation to wind direction and speed by examining the linear trends of this ratio and the spread 

of wind speeds. By looking at the entire group of ratios the linear trend R2 values (the coefficient 

of determination) for HAG, PVV, PS1A, PV6, and PN7A are 0.28, 0.34, 0.18, 0.25, and 0.27 

respectively. There is no discernible pattern between wind direction and higher or lower R2 

values.  

Looking at the slopes of the linear regressions, both those calculated from all samples and 

those determined by wind direction subsets, it is visible that the trends are positive with an 

increase in ground wave amplitude signaling an increase in air wave amplitude. Looking at the 

wind direction subset of linear regressions, with the exception of station PS1A, there is a pattern 

between the wind direction and the slope of the linear regression. The slope of the linear 

regression is steeper when the wind is blowing towards the station and lower when the wind is 

blowing away from the station. This shows that when the wind is blowing towards the station a 

larger amount of energy is being coupled into the ground. The R2 values and slopes for each 

linear regression are outlined in table 6. Wind speeds varied between 1 and 32 knots and there is 

no visible relation between amplitude ratio and wind speed. 

 

Gas 

Using the process outlined above the total energy released by Pavlof during the eruption 

was calculated to be 3.04 x 1011 J. The average explosion released 9.28 x 106 J of energy, 

equivalent to the blast generated by 2.22 kg of TNT.  
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 The plume generated at Pavlof was considered to be mainly composed of steam. By 

making the assumption that all gas released was water the total metric tons of water released by 

the eruption was calculated to be 729 metric tons of water. The average amount of water released 

per explosion was 0.022 metric tons, which is equivalent to 22 liters or 4.84 gallons of water per 

explosion. Assuming a lava with 4 wt % water and a density of 2.9 tons/m3 this amount of water 

release is equivalent to fully degassing 6284 m3 of lava. In our calculations there is a direct 

relationship between temperature and the number of moles of water calculated. Since we used a 

constant temperature value (630o Celsius), based on one observation on August 18th, for the 

entire eruption it is possible that this value could be an underestimate if the temperature was 

actually cooler or an overestimate if the temperature of the magma was hotter over the course of 

the eruption. More temperature data would allow for a better understanding of this value. 

 

  
 

Figure 15: ASTER satellite 
image. The plume is visible 
within the red ellipse. A thermal 
anomaly is also visible within 
the green circle. Image edited 
from Wessels, Alaska Volcano 
Observatory/U.S. Geological 
Survey.  
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Figure 16: AVHRR satellite image. The 
ash plume can be seen in this image as the 
blue streak, it is being blown south over 
the Pacific Ocean, visibly extending to 
almost 100 km in length. Image from 
Wessels, Alaska Volcano 
Observatory/U.S. Geological Survey. 
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Figure 17: August 30th plume. It reached an altitude of 18,000 ft. Image from Waythomas, Alaska Volcano 
Observatory/U.S. Geological Survey.  
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Table 4: Plume Descriptions. Descriptions of the log entries used to create Figure 8, showing the lack of consistency 
in reporting style which makes this type of information difficult to analyze. Used with permission of the Scientist-in-
charge of AVO, J. Power 
 
Date Height Description Method 

Aug 15th  8000 ft (summit level) Black ‘smoke’ extending 2 nautical miles SE 
of volcano at 10 knots PIREP 

Aug 15th - No plume later in the day Visual 

Aug 18th Few hundred m above flank 
surface Dilute ash cloud Photo 

Aug 18th - Sizable steam plume Photo 
Aug 23rd  13120 ft asl Small steam and ash ASTER 

Aug 23rd Couple thousand feel above 
summit Anemic thin stripe of ash Visual 

Aug 23rd 18000 ft Mile wide plume blowing towards SE PIREP 
Aug 27th - 8 pixel anomaly Satellite 
Aug 28th 16000 ft Ash cloud travelling SSE PIREP 
Aug 28th 14000 ft Ash moving SE PIREP 
Aug 28th 20000 ft+ Large black plume moving ESE Visual 
Aug 28th - Large plume Visual 
Aug 29th 14000 ft Plume PIREP 
Aug 29th - Ash no longer visible on satellite Satellite 
Aug 29th 14000 ft Spewing ash PIREP 

Aug 29th 15000 ft Steam / light ash trailing ESE for 10 nautical 
miles PIREP 

Aug 30th 17-18000 ft Eruption plume Photo 
Aug 30th 8000 – 15000 ft Diffuse ash cloud moving SE PIREP 

Aug 30th 8000 – 15000 ft Ash is low level and dissipating as it drifts SE 
at 20 knots SIGMET 

Aug 30th 8000 – 15000 ft Minor low level eruption, Ash drifting SE 
over water 

PIREP, 
Satellite 

Aug 30th 8000 – 15000 ft Ash drifting SE over water at 20 knots PIREP, 
Satellite 

Aug 30th 8000 – 15000 ft Ash cloud diffuse and difficult to see on 
satellite 

PIREP, 
Satellite 

Aug 30th 20000 ft - PIREP, 
Satellite 

Aug 30th 20000 ft Plume, lighting, increased explosions Photo 
Aug 30th 17-18000 ft Robust steam plume with ash at base Photo 
Aug 31st - Mentioned in ASH advisory - 
Aug 31st 12000 ft Ash cloud drifting ESE for 10 miles PIREP 
Aug 31st 12000 ft Ash moving SE at 10 knots SIGMET 

Sep 1st 13000 ft Eruption cloud ASTER 
VNIR 

Sep 1st 20000 ft Weak Ash AVHRR 

Sep 4th - Plume not moving while other clouds move 
past, no ash signal detected, cloudy AVHRR 
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Figure 18: Wind speed each minute. Velocity is in knots. The vertical grey bands are periods of time where there are 
no wind speed data from Cold Bay.  
 
 
Table 5: Beaufort Wind Scale. Created by Sir Francis Beaufort of the U.K. Royal Navy in 1850 and still in use by 
NOAA. 
 
Wind (knots) Classification 
<1 Calm 
1-3 Light Air 
4-6 Light Breeze 
7-10 Gentle Breeze 
11-16 Moderate Breeze 
17-21 Fresh Breeze 
22-27 Strong Breeze 
28-33 Near Gale 
34-40 Gale 
41-47 Strong Gale 
48-55 Storm 
56-63 Violent Storm 
64+ Hurricane 
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Table 6: R2 Values and Slopes for Amplitude Ratio Plots. Spaces shaded blue are where the wind is blowing from 
the vent towards the station. Spaces shaded red are where the wind is blowing from the station towards the vent. 
 
Station Measurement Total North/Northwest Southeast West 
HAG R2 0.28 0.29 0.25 0.33 
PVV R2 0.34 0.32 0.34 0.44 
PS1A R2 0.18 0.0003 0.22 0.36 
PV6 R2 0.25 0.29 0.25 0.49 
PN7A R2 0.27 0.20 0.42 0.27 
HAG Slope 1.42 1.97 0.99 1.54 
PVV Slope 2.91 6.34 2.54 2.87 
PS1A Slope 0.84 0.03 0.85 1.15 
PV6 Slope 0.41 0.63 0.39 0.34 
PN7A Slope 1.0 1.16 1.17 0.45 
 
  



49 
 

 

Chapter Five: 

Discussion  

 

 Explosion quakes are easily distinguishable from other seismic events due to their abrupt 

high amplitude and high frequency signal that is offset between stations based on distance from 

the source. The explosion quakes that occurred during the 2007 eruption at Pavlof occurred at a 

rate previously unseen from this volcano. The maximum number of explosion quakes noted 

during the real time monitoring effort was 14 explosion quakes per minute (S. McNutt, written 

communication). The maximum number of explosion quakes manually counted during this study 

increased this number to a recorded 19 explosion quakes per minute. Rates of up to 16 

explosions per minute were recorded during the vigorous Strombolian I phase of the 1999 

eruption of Shishaldin, showing that although our rate is high it is not unprecedented (Thompson 

et al., 2002). 

 

Continuous Seismicity  

 RSAM (Real-time Seismic Amplitude Measurement) is commonly used in monitoring 

circumstances due to its ability to simplify complex, rapidly occurring seismic data into an easier 

to comprehend plot of average amplitude (Endo and Murray, 1991). This average amplitude plot 

can be used to see general trends in seismic activity, with an increase in different types of 

seismicity, such as tremor, there is an overall increase in the average amplitude of the trace. We 

compared RSAM data to the explosion quake rate and to wind speed (fig 19). For this plot we 
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calculated the RSAM for station HAG. At this station there was the largest time gap between the 

ground wave and the ground-coupled air wave, therefore the amplitude of the explosions would 

not be hidden by interference with the ground wave. This allows the RSAM to be calculated 

from both the ground and ground-coupled air wave amplitudes rather than the interference 

pattern of the two. Looking at this overlay it is easy to see that as the number of explosion 

quakes ramps up at the start of the eruption that the RSAM follows a similar trend. This is a 

logical pattern to see since RSAM measures the average amplitude and explosion quakes have 

high amplitude onsets. As the number of explosion quakes increase the average amplitude over 

the same period of time would be expected to increase as well. The similarity in trend between 

RSAM and explosion quake rate continued through both peaks of the main eruptive phase of 

August 27th-September 1st. 

           Starting on September 2nd the similarity between RSAM and explosion quakes is less 

apparent. On September 2nd the rate of explosion quakes rapidly dropped off and then fluctuated 

in rate while RSAM values show some decrease from the main peak but remain high overall. 

The decrease on September 7th can be attributed to the fact that on this day three of the 

seismometers, including HAG, were non-functioning for a total of approximately 11 hours 

intermittently throughout the day.  At the end of the eruption the explosion quakes went from 

hundreds per day to less than 25 per day showing as a near vertical drop off in the data. RSAM 

however shows an additional period of increase on September 11th, a day with very few 

explosion quakes, before it starts steadily declining.  

            This difference in RSAM and explosion quakes during the second half of the eruption, 

most notably September 2nd-4th, and September 8th-9th, and September 11th, can be attributed to 

volcanic tremor. Even though the explosions themselves have high amplitude ground waves, if 
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the tremor that occurs between the explosive phases also has high amplitude then the non-

discriminatory RSAM average will remain high. It is therefore possible to conclude that the 

tremor had relatively low amplitude during the start of the eruption resulting in RSAM values 

tracking with explosion quake rates. The tremor amplitude then increased and remained high 

during the second half of the eruption, overshadowing any changes in explosion quake 

amplitudes before tapering down at the end of the eruption.  

             This systematic change in explosion and tremor amplitude shows that there was likely a 

change in magma or gas supply to the surface resulting in less explosive events. For explosions 

to occur there must be a continued gas flux. A steady supply of gas enriched magma would allow 

for high rates of explosions while a lessening of magma supply would lessen explosive activity 

(Garces and Hansen, 1998). This then leads to the conclusion that the high amplitude tremor that 

is keeping the RSAM values high is not solely dependent on bubble production. There is no 

consensus in the scientific community of the exact cause of volcanic tremor. It is commonly 

thought to occur as a source effect from bubble formation and subsequent collapse (McNutt et 

al., 1991). As the drop in explosive quakes indicates less gas reaching the surface it is then 

possible to determine that this instance of tremor is likely being produced from a different 

mechanism such as magma resonance or induced fracturing occurring deeper in the conduit, 

unrelated to the explosions occurring at the vent interface (Garces and McNutt, 1997). 

 The second plot in this figure shows the RSAM values plotted against the wind speed. In 

this plot we see that when the wind speed is high the RSAM is low (August 14th – 18th and 

September 10th – 12th) and reversely that when the wind speed is low that the RSAM is high 

(August 29th – September 2nd). Wind can appear as noise on a seismogram and create amplitude 

changes. However due to the fact that the wind speed was highest at the start and end of the 
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eruption and lowest during the peak of the eruption it is more plausible that these RSAM trends 

are caused from actual seismic events rather than a change in wind noise. 

 

Wind 

 By looking at the ground-coupled air waves recorded travel times, frequencies, and 

amplitude ratios in relation to wind direction and speed it is possible to determine to what extent 

these atmospheric effects must be monitored when utilizing ground-coupled air waves. The 

travel time differences show that the wind directions and speeds play a role in how long the air-

wave takes to travel from vent to station. Therefore the common wind directions and speed 

ranges for the volcano of interest should be known in order to effectively program an automated 

explosion monitoring program. However, the frequency content of the ground-coupled air waves 

does not show the same variation with wind direction. Therefore the frequency is not an aspect 

of the seismic record that requires adjusting due to wind interference. Note that theoretical 

reflection and transmission coefficients are not frequency dependent, in agreement with our 

observations. 

 For the amplitude ratio between the ground-coupled air wave and the ground phase there 

is a positive linear trend throughout all of the data, and within the binned wind directions 

themselves, however there is not a clear connection between the R2 values of the linear trends 

and the wind direction in relation to station location. Therefore, because the wind speed and 

direction does not affect the coefficient of determination it can be assumed that the overall 

positive trend between ground and air-wave amplitudes will remain constant despite variable 

weather conditions. The slopes of the linear regressions show that in the majority of cases if the 

wind is blowing towards the station that the slope will be larger than if the wind is blowing away 
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from the station. This indicates that overall the ratios have a consistently positive linear trend 

where the wind direction may enhance or diminish the scale of the positive trend but does not 

alter the coefficient of determination (R2) of the data sets. The amplitude ratios were also 

inspected in relation to wind speed and there does not appear to be any visual correlation 

between wind speed and amplitude ratio. Since it is overall a positive linear trend one can use 

either or both ground wave amplitude or air wave amplitude for monitoring the explosivity. 

Therefore it can be assumed that when using ground-coupled air waves for volcanic 

monitoring the only seismological aspect that is affected and must be accounted for is the travel 

time of the air wave. This is a factor that can easily be accounted for in future detection codes. 

Frequency and amplitude do not appear to be altered. This allows for them to be used in an 

uncorrected state for further analysis, such as the energy and mass flux calculations. Additionally 

the unaffected linear relationship between the seismic ground wave amplitude and the ground-

coupled air waves amplitude may be used in future studies to better understand magmatic gas 

content (Garces et al. 2000).  

 

Gas 

 Due to the mass flux being directly derived from the energy calculation, the cumulative 

release plots for both of these variables follow the same shape (fig 20). Both the energy and gas 

fluxes are directly connected to the activity of magma within the conduit system. Therefore by 

examining the cumulative release curve it is possible to make some inferences on the magma 

behavior within the conduit. Figure 20 is divided a-g to show the sections described as follows. 

The plot begins with an exponential increase in events (a). This rapid increase could indicate the 

first batch of magma being injected and degassing. The plot then takes on a linear trend during 
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the middle section (August 30th - September 2nd) where the highest rates and plume heights were 

noted (b). This linear trend indicates that the supply of gas/magma was constant. After this main 

phase there is a flattening of the curve followed by another small increase(c-d), which is then 

repeated (e-f), before the plot flatlines rapidly at the end of the explosive phase of the eruption 

(g). This flattening followed by increase pattern could represent additional small batches of 

magma that ascended and degassed before the end of the eruption.  

  On figure 20 we have also plotted the cumulative number of explosion quake events over 

the course of the eruption. This curve also follows the same pattern as the energy and mass flux 

curves. This shows that although it is useful to know the amount of energy and water being 

released that during a fast-paced monitoring situation it is not necessary to go through the 

calculations and determine the exact values of energy and gas. It would be possible to gain an 

understanding of the general trends of these properties simply by examining the cumulative 

event curve. 

 

 Energy 

 Yokoyama (1957) lists five different categories in which a volcano exerts energy. They 

are: 1) volcanic tremor, 2) local earthquakes, 3) fracturing of the surrounding ground material 4) 

ejection of material, and 5) producing disturbances in the atmosphere or ocean. He further 

subdivides the ejection of material into potential, kinetic, and thermal energies. Yokoyama 

(1957) focuses his paper on the thermal subcategory stating that it constitutes the largest 

proportion of energy emitted (De la Cruz-Reyna, 1991). Therefore the magnitude of the total 

energy erupted can be determined by the magnitude of thermal energy (Shimozuru, 1967). Table 
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7 gives the thermal energies calculated by Yokoyama (1957) and the VEIs (Simkin et al., 1981) 

for several eruptions of varying scale. 

 The 2007 eruption of Pavlof was labeled as a VEI 2 eruption by the Alaska Volcano 

Observatory. The energy calculations made in this paper are from the pressure and volume of a 

bubble bursting and are therefore kinetic energy values. Other forms of volcanic kinetic energy 

include tremor and volcano-tectonic (VT) earthquakes (Shimorzuru, 1967). The total kinetic 

energy release calculated from the explosion quakes was 3.04 x 1011 J. This is several orders of 

magnitude smaller than the smallest energy for a VEI 2 eruption listed by Yokoyama (1957), 

which is 1x1014 J for the 1893 eruption of Azumasan. This equates to approximately 0.3% of the 

thermal energy release for a similar VEI volcano. Although it is only a small proportion, by 

following Yokoyama’s (1957) theory that acoustic kinetic energy is only considered to make up 

a small portion of total energy release when compared to thermal energy, we can deem this result 

as consistent with prior observations.  

 Pavlof is in a remote area, suffers from perpetually bad weather, low visibility, and has 

frequent eruptions (McNutt, 1986).  The ability to track these characteristic explosions, calculate 

the kinetic energy released, monitor the eruptive intensity, and track potential ash plume 

development from the seismic dataset, is promising for future monitoring of eruptive events, as 

well as an increased understanding of seismic verses acoustic efficiency. 

   

 Mass 

 The average gas mass released per bubble is 0.022 metric tons, which is 0.022 m3 of 

water per bubble. The maximum bubble mass is 0.2 metric tons, or 0.2 m3 of water. When 

compared to other Strombolian eruption calculated bubble gas masses (Vergniolle et al., 2004), 
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these values are low. However, the Pavlof eruption was a notably gas poor eruption, with no SO2 

measurements (airborne measurements were not done and no SO2 was detected in Ozone 

Monitoring Instrument data), and only a small plume (Waythomas et al., 2008). It is speculated 

by Waythomas et al., (2008) that the 2007 eruption might have been the result of a leftover slug 

of partially degassed magma from the eruption of 1996 having finally worked itself to the 

surface.  

 In order to determine if our calculated mass of gas release is reasonable we compare it 

with the total mass of ejecta to determine a total weight percent water released. Our calculated 

729 metric tons of water is equivalent to 729x103 kg of water. Waythomas et al. (2008) 

calculated a total ejected volume of 105 m3. Using a density of 2.9x103 kg/m3 for basaltic 

andesite we get a weight percent water of 0.025 wt % being exsolved during the eruption. Since 

not all water is exsolved from the magma during an eruption - as evidenced by lava samples 

commonly having measureable weight percents of water and with weight percents of arc basaltic 

andesites ranging from 1-6 wt % - having a 0.025 wt % of water exsolved during eruption is a 

reasonable amount, especially for an eruption of this size with small plume development 

(Winter, 2010; Chouet and Matoza, 2013). This small amount of exsolved gas suggests that other 

methods of gas release must be operating, these include passive exsolution at the vent-air 

interface, exsolution into porous ground material before the gas reaches the vent-air interface, 

and that some of the water might stay dissolved in the lava after expulsion.  
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Figure 19: RSAM, explosion rates, and wind speed. The red line is the 1-minute RSAM value calculated for station 
HAG. The RSAM values have been shifted down by 120 counts in order to better facilitate large scale pattern 
relationships between the plots. The top plot shows the RSAM compared with the per hour rates of explosions. The 
bottom plot shows the RSAM compared with the wind speed in knots. 
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Figure 20: Cumulative explosion quakes, energy and water mass. The calculated cumulative value curves for 
explosion rates and energy released, mass of water exsolved by Pavlof, as calculated from ground-coupled air wave 
explosion amplitudes and Garces et al. (2000) equations. The labeled divisions (a-g) are in reference to the 
discussion in the text.  
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Table 7: Thermal Energy Release. Spaces shaded yellow are VEI 2 eruptions, log energies (in ergs) from Yokoyama 
1957, VEIs from Simkin et al 1981. Chart modified from De la Cruz-Reyna 1991 
 
Volcano Year Log E (ergs) Joules VEI 
Mihara 1912 20.80 6.31E+13 1 
Sakurazima 1946 24.32 2.09E+17 2 
Torishima 1939 23.99 9.77E+16 2 
Mihara 1950 23.97 9.33E+16 2 
Miyakeshima 1940 23.68 4.79E+16 2 
Pemtang Bata 1933 22.65 4.47E+15 2 
Azumasan 1893 21.00 1.00E+14 2 
Mihara 1777 24.00 1.00E+17 3 
Guuntur 1843 22.81 6.46E+15 3 
Asama 1935 22.68 4.79E+15 3 
Una Una 1898 22.26 1.82E+15 3 
Adatarasan 1900 21.81 6.46E+14 3 
Asama 1938 21.60 3.98E+14 3 
Sakurazima 1914 25.66 4.57E+18 4 
Asama 1783 24.94 8.71E+17 4 
Fugi 1707 24.85 7.08E+17 4 
Komagatake 1929 23.75 5.62E+16 4 
Bandaisan 1888 23.00 1.00E+16 4 
Krakatoa 1883 25.00 1.00E+18 6 
Tambora 1815 26.92 8.32E+19 7 
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Chapter Six: 
 

Conclusions 

 

 De Angelis et al. (2012) states that “volcano monitoring efforts should not rely primarily 

on second-order phenomena such as air-to-ground coupling.” Despite their arguments that 

ground-coupled air waves from explosion quakes should only be used in the planning of future 

infrasonic arrays, this study proves that there is value in utilizing these less conventional seismic 

signals. Although infrasonic records are a more direct measure of the atmospheric pressure there 

is not the same level of infrastructure for infrasound for there is for seismic data. Until De 

Angelis et al.’s (2012) goal of a complete infrasonic array covering the Aleutians is realized, 

knowing how to use the seismic equivalent has value. Additionally, the small scale explosions 

that were recorded by the Pavlof seismic array are not large enough to be captured by a regional 

rather than local infrasound array.  

Another situation that calls for recognition of the usefulness of these less commonly used 

signals is financial. The funding situation at the Alaska Volcano Observatory has been 

effectively halved in recent years due to smaller federal budgets and the sequestration (Witze, 

2013). With less financial support available monitoring techniques must become more creative. 

The likelihood of the ideal and expansive infrasonic network becoming a reality in the near 

future is slim. In fact many of the currently deployed seismic networks have begun to go offline 

as expensive maintenance trips become financially unfeasible. Thus the maximum use must be 

made of existing data and infrastructure. 



61 
 

The benefit of the ground-coupled air wave is that even small scale explosions are 

detected and require a minimum of only 2 stations at different distances to the volcano to detect 

the slower atmospheric wave velocities. Therefore, even if several seismic stations go offline, as 

long as two still function it is possible to calculate the volcano’s energy/gas mass flux. The effect 

of stations going offline and not being repaired was realized during the 2013 eruption of Pavlof. 

During this eruption the data analysis suffered because two of the local stations, PN7A and PV6, 

were offline (Waythomas et al., 2014). Pavlof erupted twice in 2014, the first episode was from 

May to June and only two of the seismic stations, PN7A and PV6 were functioning throughout. 

The other four stations (PS4A, PVV, PS1A, and HAG) suffered a data outage and have no record 

of this eruption. The second eruptive episode of 2014 occurred in November and all six stations 

were operational throughout. No published research has yet been done on either of these 2014 

eruptive periods so it is unknown how damaging the station data outage during the first eruptive 

period will be to research. 

Having the ability to calculate kinetic energy, mass release, and knowing the relationship 

between these values and the cumulative explosion rate enables the monitoring community to 

make better informed decisions for both nearby residents and the avionics community. The fact 

that the cumulative curves for energy, gas mass flux, and event count follow the same trends 

increases the value of monitoring explosion quakes. Even without calculating the gas and energy 

one can still determine their trend through the event count.  By being able to track and calculate 

these parameters from the seismic records we show the multi-functionality of seismic monitoring 

at a time when the entire monitoring community must learn to do more with less. In this study 

we were able to utilize the seismically recorded ground-coupled air wave to calculate reasonable 

numbers for both kinetic energy release and gas mass release resulting from the Strombolian 
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explosions during the 2007 eruption of Pavlof.  We further show that explosion-quake rate 

follows both energy and gas release rates. Therefore, by monitoring the explosion-quake rate, 

monitoring communities will be able to have a better understanding of magmatic gas flux and the 

potential for ash plume development.   
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Appendix A: 
 

Station Pseudo-Helicorders 
 
 

The following pseudo-helicorder images were created using the dbheli command in the software 

package Antelope, distributed by Boulder Real Time Technology. Each line is one day (24 

hours) in length. They all start at midnight on August 14th and end at midnight on September 16th 

2007. This large format view of the eruption allows broad trends and mechanical issues to be 

seen more clearly. The lahar sequences that flowed down the southeast slope are clearly visible 

on PVV. The mechanical issue with PS1A during the first week of the eruption is also very 

visible. 

 

 
Figure A1: HAG pseudo-helicorder  
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Figure A2: PVV pseudo-helicorder  
 
 
 

 
Figure A3: PS1A pseudo-helicorder  
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Figure A4: PV6 pseudo-helicorder  
 
 
 

 
Figure A5: PN7A pseudo- helicorder  
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Appendix B: 

MATLAB Code for Recording Ground-Coupled Air Wave Amplitudes 
 
 

This MATLAB code is used to take the manually recorded times from the input file and 

pick and record the amplitudes for each seismic trace. This code applies a human error correction 

of 0.5 seconds and takes into account the calculated wind direction travel time difference from 

average values. The code works by going to the station and time specified and then shifting 

between traces, moving backwards or forwards in time according to air wave travel time 

differences between stations, and then taking the maximum amplitude within a window 

determined by the human error and travel time differences. These values are then recorded into a 

file. During the manual recording of events only the clearest time and station were recorded. 

Therefore in order to calculate all of the amplitudes this code must be altered and run one time 

for each station that had a manually recorded event, for a total of 5 runs. The result files are then 

compiled in order to have a complete list of amplitude measurements. 

 
function stats = AmpsAllAttempt_retry() 
    %AmpsAllAttempt  
    % Cassandra Smith & Glenn Thompson, 2014 
     
    load ArrivalsDividedbyStation.mat 
    % first row is a header row, so start at index 2 
    MIN_INDEX = 2; 
 
    % create a datasource object 
    dbpath = '/home/c/cmsmith10/dbpavlof2007_224_273'; 
    ds = datasource('antelope', dbpath); 
 
    chan = 'EHZ'; 
    network = 'AV'; 
    location = '--'; 
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    %triggers based on assumed potential human error of +-0.5s + wind delay calculations 
    %wind delay [sta(wd in sec)]: HAG(0.7), PN7A(0.4), PS1A(0.5), PV6(0.4), PVV(0.6) 
 
    % structure of stations, trigger values, and arrival data files 
    s(1).station = 'HAG'; 
    s(1).pre_trigger = 1.2; 
    s(1).post_trigger = s(1).pre_trigger; 
    s(1).arrivals = ArrivalsHAG; 
    s(1).differential_travel_times = 0; 
    s(2).station = 'PN7A'; 
    s(2).pre_trigger = 0.9; 
    s(2).post_trigger = s(2).pre_trigger; 
    s(2).arrivals = ArrivalsPN7A; 
    s(2).differential_travel_times = 12.2; 
    s(3).station = 'PS1A'; 
    s(3).pre_trigger = 1; 
    s(3).post_trigger = s(3).pre_trigger; 
    s(3).arrivals = ArrivalsPS1A; 
    s(3).differential_travel_times = 5.6; 
    s(4).station = 'PV6'; 
    s(4).pre_trigger = 0.9; 
    s(4).post_trigger = s(4).pre_trigger; 
    s(4).arrivals = ArrivalsPV6; 
    s(4).differential_travel_times = 20.0; 
    s(5).station = 'PVV'; 
    s(5).pre_trigger = 1.1; 
    s(5).post_trigger = s(5).pre_trigger; 
    s(5).arrivals = ArrivalsPVV;   
    s(5).differential_travel_times = 8.3; 
 
    % Let's loop over all stations 
    for station_index = 1:length(s) 
         
        sta = s(station_index).station; 
        arrival = s(1).arrivals(MIN_INDEX:end) - 

s(station_index).differential_travel_times;  
        pre_trigger = s(station_index).pre_trigger; 
        post_trigger = s(station_index).post_trigger; 
         
        % ****  
        % Compute the predicted arrival times of air waves using arrival 
        % time of this station and the differential_travel_times defined 
        % for this station 
         
        for i=MIN_INDEX:length(arrival) 
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            epoch_start = arrival(i) - pre_trigger; 
            epoch_end   = arrival(i) + post_trigger; 
 
            % create a scnl object 
            scnl = scnlobject(sta, chan, network, location); 
 
            % get our waveform object 
            snum = epoch2datenum(epoch_start); 
            enum = epoch2datenum(epoch_end); 
            w = waveform(ds, scnl, snum, enum);  
 
            if isempty(w) 
                continue 
            end 
 
            m = max(abs(detrend(w))); 
            if ~(m>0) 
                m = 0; 
            end    
 
            if (length(m)==1 & length(arrival(i)==1)) 
                stats(i-1) = struct('sta', sta, 'chan', chan, 'snum', snum, 'enum', enum, 

'arrival_time', arrival(i), 'max_amp', m); 
            else 
                disp(sprintf('length m=%d',length(m))); 
                disp(sprintf('length arrival_time=%d', length(arrival(i)))); 
                error('Aborting') 
            end 
 
        end 
 
                figure(1);      % Plot station subplots of time of event and maximum amplitude 

recorded 
        subplot(2,3,station_index) 
 
        length([stats.arrival_time]) 
        length([stats.max_amp]) 
        plot( epoch2datenum([stats.arrival_time]), [stats.max_amp], 'k.' ) 
        datetick('x') 
        title(sprintf('%s Amplitudes',sta))  
        xlabel('date')  
        ylabel('amplitude (nm)')  
          
    end 
    
end  
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Appendix C: 
 

Equations for Pressure Code 
 
 
The following equations are required for equation (1) and come from Brekhovskikh (1980) 
 
Reflection Coefficient 
 

𝑃 =  
𝑍𝐿𝑐𝑚𝑐22𝛾1 + 𝑍𝑇𝑐𝑠𝑛22𝛾1 − 𝑍
𝑍𝐿𝑐𝑚𝑐22𝛾1 + 𝑍𝑇𝑐𝑠𝑛22𝛾1 + 𝑍

 

 
Longitudinal Transmission Coefficient 
 

𝑊𝐿 =  −
𝑐1
𝑐

cos𝜃 cos 2𝛾1
cos𝜃1

(𝑃 − 1) 

 
Transverse Transmission Coefficient 
 

𝑊𝑇 =  
2𝑐𝑠𝑛2𝛾1

tan𝜃
(𝑃 − 1) 

Impedances 
 
  𝑍 = 𝜌𝜌

cos𝜃
                                𝑍𝐿 = 𝜌1𝜌1

cos𝜃1
                     𝑍𝑇 = 𝜌1𝑏1

cos𝛾1
  

 
Table C1: Variables for Pressure Code 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
  

Symbol Description 
𝜃 Angle normal to wave front 
𝜃1 Angle for longitudinal wave front 
𝛾1 Angle for transverse wave front 
𝜌 Density of the ground 
𝑊𝑇 Transverse Transmission Coefficient 
𝑊𝐿 Longitudinal Transmission Coefficient 
𝑐 P wave velocity in air 
𝑐1 P wave velocity in unconsolidated ground tephra 
𝑏1 S wave velocity in unconsolidated ground tephra 
𝑍 Normal Impedance 
𝑍𝑇  Transverse Impedance 
𝑍𝐿 Longitudinal Impedance 
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Appendix D: 
 

Python Code for Calculating Energy and Mass Release from Amplitudes 
 

 
The following is the Python code that we wrote to calculate the energy and gas mass 

release of the explosion quakes. The code and its variables are explained in Chapter Three: 

Procedures and Methodology. It is provided here for completeness, the files listed in the code as 

input and output are provided in table form after the code.  

 
#Set Up needed modules 
 
import numpy as np 
import matplotlib.pyplot as plt 
import csv 
from netcdftime import num2date 
from datetime import datetime 
 
#-------------------------------------------------------------------------------------------------------- 
#import amplitude file  
 
date, Amp = np.loadtxt('Amps_for_demo.txt', usecols = (0,1), unpack=True) 
datez = np.loadtxt('Amps_for_demo.txt', usecols = (0,)) 
 
#-------------------------------------------------------------------------------------------------------- 
#set up variables 
 
theta = 76.61 #angle normal to sound wavefront 
theta1 = 13.39 #angle for longitudinal wavefront 
y1 = 13.39 
 
r2 = 7060. #distance of PN7A from vent 
 
#values from Garces et al 2000 
p = 1. #air density kg/m3 
p1 =  2700. #ground density kg/m3 
c = 320. #speed of pwave in air m/s 
c1 = 1500. #speed of pwave in ground loose tephra shallow m/s 
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b1 = 380. #s wave velocity surface loose tephra m/s 
 
#assume an average frequency of 7Hz for the ground coupled air wave at PN7A, 

determined from freq plots 
f = 7. 
 
#-------------------------------------------------------------------------------------------------------- 
#variables to determine 
 
Ampt = Amp*0.000000001 #convert amplitude from nm/s to m/s 
 
B = (2*np.pi*f)/b1 #vertical wavenumber (used speed of s in loose tephra) 
kaC = (2*np.pi*f)/c1 #horizontal wavenumber (used speed of p in loose tephra) 
x = (c/f) #wavelength 
t = (1.0/f) #period 
w = 2*np.pi*f #angular freq 
a1 = (2*np.pi*f)/c #vertical acoustic wavenumber (used speed of p in air bc acoustic 

wave) 
 
j = 1j 
 
#-------------------------------------------------------------------------------------------------------- 
#solve for the Zs and Ws and V 
 
# Impedences 
Z_T = (p1*b1)/np.cos(y1)  
Z_L = (p1*c1)/np.cos(theta1) 
Z = (p1*c)/np.cos(theta) 
 
#print 'Z_T:', Z_T 
#print 'Z_L:', Z_L 
#print 'Z:', Z 
 
#V is the reflection coefficient 
V = ((Z_L*(np.cos(2*theta)**2)) + (Z_T*(np.sin(2*theta)**2)) - 

Z)/((Z_L*(np.cos(2*theta)**2)) + (Z_T*(np.sin(2*theta)**2)) + Z) 
 
#W_L and W_T ar the longitudinal and transverse transmission coefficients 
W_L = (-c1/c)*((np.cos(theta)*np.cos(2*y1))/np.cos(theta1))*(V-1) 
W_T = (2*(np.sin(y1)**2)/np.tan(theta))*(V-1) 
 
#-------------------------------------------------------------------------------------------------------- 
 
#solved for po 
po = (Ampt*p1*w)/((-a1*W_L*np.exp(-j*a1))+(kaC*W_T*np.exp(-

j*B)))*np.exp((kaC*x)-(w*t)) 
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po_r = np.real(po) #real portion 
pop_r = abs(po_r) #absolute value/magnitude of real portion 
 
pop_rff = pop_r*5.5 #(absolute value, real portion multiplied by multiplicative 

coefficient) 
 
#-------------------------------------------------------------------------------------------------------- 
# use pressure volume to get n moles 
wavelength = c/f 
r1 = wavelength/4. #radius of original bubble = 1/4 period = rise time, also used as initial 

radius for pressure calc 
 
Vol = (4./3.)*np.pi*(r1**3) #(m3 using 1/4 period as radius, sphere at vent) 
 
R = 8.3145 #(J/mole*K) 
T_C = 630. #http://www.avo.alaska.edu/images/image.php?id=13477 temperature from 

FLIR 
T = T_C + 273. #in K  
 
pop_rff_amped = pop_rff*(r2/r1) #pressure amplified by 1/r law back to what the source 

pressure would be 
 
n = (pop_rff_amped*Vol)/(R*T) 
 
Energy = pop_rff_amped*Vol 
 
mE = np.mean(Energy) 
#print mE 
 
#-------------------------------------------------------------------------------------------------------- 
#convert from number of moles to metric tonnes - assuming gas released is water 
 
# 1 mole = 18 grams for H2O 
grams = n*18 
 
#1kg = 1000g 
kg = grams*0.001 
 
#1 metric tonne = 1000000grams 
metric_tonnes = grams*0.000001 
 
mmt = np.mean(metric_tonnes) 
#print mmt 
 
#-------------------------------------------------------------------------------------------------------- 
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#convert matlab datenum to python datetime 
# 

http://nbviewer.ipython.org/github/nicolasfauchereau/UoA_Workshop_14082014/blob/master/Sc
ipy.ipynb 

 
matlab_datenum = datez 
 
date_proleptic = num2date(matlab_datenum, units='days since 000-01-00 00:00:00', \ 
                          calendar='proleptic_gregorian') 
 
#-------------------------------------------------------------------------------------------------------- 
 
#write results to a file 
 
p2r = (zip(date, date_proleptic, Energy, metric_tonnes)) 
f = open('FLUX_FILE_Demo.txt', 'w') 
writer = csv.writer(f, delimiter='\t') 
writer.writerow(('datenum', 'date', 'Energy', 'metric_tonnes H2O')) 
writer.writerows(p2r) 
 
cs = np.cumsum(metric_tonnes) 
cs_en = np.cumsum(Energy) 
#-------------------------------------------------------------------------------------------------------- 

 
Table D1: Example of Input File. The file should be a tab delimited text file containing two columns and no header 
line. The first column should have the datenum value for the time of the explosion quake. The second column should 
have the measured amplitude of the event in nm/s. The code is easily altered to accommodate for other set ups of the 
data. 
 
733274.6509 3605.051647 
733286.3656 3120.143774 
733290.867949  11621.839879 
 
 
Table D2: Example of Output File. This file will be a tab delimited text file and can be customized to contain any of 
the intermediary calculated values. 
 
Datenum Date Energy Metric tons H2O 
733274.65090000001 2007-08-20 15:37:18 6219117.1217189394 0.014909990024757068 
733286.36560000002 2007-09-01 08:46:28 5382596.8299943581 0.012904478798483035 
733290.86794899998 2007-09-05 20:49:51 20048973.067421038 0.048066306292563872 
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Appendix E: 
 

Effect of Wind Noise on Ground-Coupled Air Wave Picks 

 

Introduction 

 For this study we manually inspected the seismograms with no frequency filter. 

By doing the manual inspection we were able to record more explosion quakes than Haney et al., 

(2009) were able to do with their detection algorithm, and more than were noticed during the 24 

hour/day monitoring of the eruption by AVO. However, even with our manual inspection it is 

possible that due to wind noise that smaller explosions might have been missed.  

 

Methods 

 In order to determine the extent that wind noise interference might have on manually 

recognizing ground-coupled air waves we compared two hour segments from a calm day and a 

windy day. We determined if the day was calm or windy by looking at the plot of wind speed. 

We choose August 30th from noon to 2:00 pm as the calm portion, during this time winds did not 

exceed 10 knots. For the windy portion we picked September 10th from midnight to 2:00 am 

where the wind speeds reached 44 knots. We attempted to pick portions of the record where 

there were no data drop outs.  

 We used the original explosion counts and then filtered the resulting data with a 10-20 Hz 

band pass filter applied through dbpick in the software package Antelope. We choose this filter 

based on the work of McNutt et al. (1991) who noted the frequency range of 10-15 Hz being 
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prominent on all stations. In our frequency analysis the prominent energy was most often 

between 5-10 Hz. However all stations did have components in the 10-15 Hz range as well. The 

10-20 Hz band pass was chosen after some testing that showed that this range both limited the 

noise and allowed for easy identification of the explosion quakes. After filtering we manually 

counted the ground-coupled air waves.  

 

Results 

The results of this experiment show there was an increase in visible explosion quakes on 

both the calm and the windy day. By calculating the percent increase in number over each 

section we saw an increase of 27 % in the calm section and 60 % in the windy section.  

 

Table E1: Effect of Noise and Filters on Explosion Quake Counts 

Date Calm Windy Events Unfiltered Events Filtered Percent Change 
8/30 X  182 231 26.9% 
9/10  X 232 372 60.3% 

 

Conclusions 

The difference in percentage increase shows that wind noise is likely playing a part in 

hiding these events, as wind noise would be frequencies above and below the filter frequencies. 

However, it must also be considered that the extraneous noise in the seismograms might be from 

tremor, which would also be filtered out as it has a frequency below the filtered band. Either 

way, the large increase in discovered explosion quakes shows the potential of these events in 

monitoring. Haney et al. (2009) detected a maximum of 300 explosion quakes per day with their 

cross correlation of the ground waves algorithm. In this study we increased this number to a 

maximum of 550 explosion quakes per day by manually counting the ground-coupled air waves. 
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The potential of even more explosion quakes being detected with optimal frequency filtering 

further increases the potential for these events to be used in effective monitoring. Therefore, for 

future analysis of explosion quakes a band pass filter in this range should be applied during 

monitoring/processing to catch these small events that get lost in the wind noise so that they can 

be incorporated into the analysis. 

Below is a set of pseudo-helicorders showing the two hour section used for both the calm 

and windy sections, filtered and unfiltered. Only station HAG is shown, but all stations were 

used for the measurements. 

 

 

Figure E1:  HAG calm, unfiltered pseudo-helicorder 
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Figure E2: HAG calm, filtered pseudo-helicorder 
 
 

 
Figure E3: HAG windy, unfiltered pseudo-helicorder 
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Figure E4: HAG windy, filtered pseudo-helicorder 
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Appendix F: 
 

Additional Figures 

 

Frequency Spectra 

 The following images are examples of the frequency spectra showing typical 

examples from the suite of sample waveforms for each station. The lefthand frame shows the 

waveform and the righthand frame shows the corresponding frequency spectrum. 

 

Figure F1: Station HAG frequency spectra 
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Figure F2: Station PS1A frequency spectra 

 

Figure F3: Station PVV frequency spectra 
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Figure F4: Station PN7A frequency spectra 

 

Figure F5: Station PV6 frequency spectra 
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Error Ranges 

 The following figures show the variation in the calculated values of energy and water 

content depending on the input variables given for frequency and temperature. For the variation 

of frequency temperature was kept constant at 630 degrees Celsius. For the variation of 

temperature the frequency was kept constant at 7 Hz.

 

Figure F6: Change in energy with frequency 
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Figure F7: Change in water content with frequency 

 

Figure F8: Change in cumulative energy with frequency 
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Figure F9: Change in cumulative water content with frequency 

 

Figure F10: Change in energy with temperature 
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Figure F11: Change in water content with temperature 

 

Figure F12: Change in cumulative energy with temperature 
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Figure F13: Change in cumulative water content with temperature 

 


