UNITED STATES DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

Supplemental analytical results and sample locality map of stream-sediment and heavy-mineral-concentrate samples from the Graig Study Area; Graig, Dixon Entrance, Ketchikan, and Prince Rupert guadrangles, Alaska

By

D.E. Detra, J.M. Motooka, and J.B. Cathrall

Open-File Report 92-552

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

U.S. Geological Survey, DFC, Box 25046, MS 973, Denver, CO 80225

CONTENTS

Page

Studies Related to AMRAP 2
Introduction
Methods of Study 4
Sample Media
Sample Collection 4
Stream-sediment samples 4
Heavy-mineral-concentrate samples
Sample Preparation 4
Sample Analysis 5
Spectrographic method
Chemical methods
Data Storage System
Description of Data Tables
References Cited

ILLUSTRATIONS

Figure 1. Location map of the Craig Study Area	3
Plate 1. Localities of heavy-mineral-concentrate and stream-sediment samples from the Craig, Dixon Entraance, Ketchikan, and Prince Rupert quadrangles, Alaska	ocket

TABLES

Table	1.	Limits of determination for spectrographic analysis of stream
		sediments
Table	2.	Chemical methods used
Table	3.	Results of analysis of stream-sediment samples
Table	4.	Results of analysis of heavy-mineral-concentrate samples 14
Tables	s 1	- 4. Digital format on 5 1/4" floppy disk in pocket

STUDIES RELATED TO AMRAP

The U.S. Geological Survey, is required by the Alaskan National Interests Lands Conservation Act (Public Law 96-487, 1980), to survey certain Federal lands to determine their mineral resource potential. Results from the Alaskan Mineral Resource Appraisal Program (AMRAP) must be made available to the public and be submitted to the President and Congress. This report presents analytical results of a geochemical survey of the Craig, Dixon Entrance, and a small part of the Ketchikan, and Prince Rupert quadrangles, Alaska.

INTRODUCTION

In the summer of 1991 the U.S. Geological Survey conducted supplemental reconnaissance geochemical survey of the Craig Study Area, Alaska. This report presents data from the analysis of samples collected during this survey and supplements U.S. Geological Survey Open-File Report 91-36A (McDanal and others 1991) where a preponderance of the data generated from the original reconnaissance geochemical survey is presented. The Craig Study Area comprises about 1400 mi² (3600 km²) in southeastern Alaska, and includes all of Craig, Dixon Entrance, and a small part of the western fringes of the Ketchikan and Prince Rupert 1:250,000 scale quadrangles (see fig. 1). Access to the study area is limited to the use of boats and flost planes. The larger settlements are Craig, Klawak, Hollis, and Hydaburg with Ketchikan, to the east, the nearest distribution center for the study area.

A digital Lotus Base format of the data which is presented can be found on floppy disk in the pocket of this report, U.S. Geological Survey Open-File Report 92-XXX.

The Craig Study Area contains parts of three northwest-trending tectonostratigraphic terranes (Berg and others, 1972, 1978; Monger and Berg, 1987). From the southwest to the northeast, they are the Alexander terrane, the Gravina-Nutzotin overlap assemblage, and the controversial Taku terrane (Brew and Ford, 1984). The climate of the region is mild with an average annual rainfall of 100-160 inches, a mean daily temperature of 60-64°F in July and 28-32°F in January.

The Craig Study Area includes parts of the (from west to east) Prince of Wales Mountains, Kupreanof Lowlands, and Coastal Foothills (physiographic divisions of Wahrhaftig, 1965). The Prince of Wales Mountains physiographic division consists of moderately rugged glaciated mountains with a maximum elevation of 3,800 ft. They are disected by steep-walled U-shaped valleys and by fiords 600-1,000 ft deep. The Kupreanof Lowlands physiographic division consists of islands and channels with a local relief of 300-500 ft and a maximum elevation of 1,500 ft. The coastal Foothills physiographic division consists of high mountains 3-30 mi across separated by flat floot valleys and straits 1/2-10 mi wide; with a maximum elevation of 4,500 ft.

Figure 1. Location map of the Craig Study Area, Alaska

METHODS OF STUDY

Sample Media

Analyses of the stream-sediment and heavy-mineral-concentrate samples represent the chemistry of the rock material eroded from the drainage basin upstream from each sample site. Such information is useful in identifying those basins which contain concentrations of elements that may be related to mineral deposits. Heavy-mineral-concentrate samples provide information about the chemistry of certain minerals in rock material eroded from the drainage basin upstream from each sample site. The selective concentration of minerals, many of which may be ore related, permits determination of some elements that are not easily detected in stream-sediment samples.

Sample Collection

Forty six heavy-mineral-concentrate and 51 stream-sediment samples were collected (plate 1). Plate 1 shows the localities where samples were collected for this supplemental study, in addition to the localities of samples collected for the original study as presented by McDanal and others, 1991.

Stream-sediment samples

The stream-sediment samples consisted of active alluvium collected primarily from first-order (unbranched) and second-order (below the junction of two first-order) streams as shown on USGS topographic maps (scale = 1:250,000) (plate 1). Each sample was composited from several localities within an area that may extend as much as 20 ft from the site plotted on the map.

Heavy-mineral-concentrate samples

Heavy-mineral-concentrate samples were collected from the same active alluvium as some of the stream-sediment samples. Each bulk sample was screened with a 2.0-mm (10-mesh) screen to remove the coarse material. The less than 2.0-mm fraction was panned until most of the quartz, feldspar, organic material, and clay-sized material were removed.

Sample Preparation

The stream-sediment samples were air dried, then sieved using 80-mesh (0.17-mm) stainless-steel sieves. The portion of the sediment passing through the sieve was saved for analysis.

Samples that had been panned in the field were air dried and sieved to -35 mesh; bromoform (specific gravity 2.85) was used to remove the remaining quartz and feldspar. The resultant heavy-mineral sample was separated into three fractions using a large electromagnet (in this case a modified Frantz Isodynamic Separator). The most magnetic material (removed at a setting of 0.25 ampere), primarily magnetite, was not analyzed. The second fraction (removed at a setting of 1.75 ampere), largely ferromagnesian silicates and iron oxides, was saved for archival storage. The third fraction (the nonmagnetic material which may include the nonmagnetic ore minerals, zircon, sphene, etc.) was split using a Jones splitter. One split was hand ground for spectrographic analysis; the other split was saved for mineralogical analysis. (These magnetic separates are the same separates that would be produced by using a Frantz Isodynamic Separator set at a slope of 15° and a tilt of 10° with a current of 0.2 ampere to remove the magnetite and ilmenite, and a current of 0.6 ampere to split the remainder of the sample into paramagnetic and normagnetic fractions.)

Sample Analysis

Spectrographic method

The stream-sediment samples were analyzed for 35 elements and the heavymineral-concentrate samples were analyzed for 37 elements using a semiquantitative, direct-current arc emission spectrographic method (modification of Grimes and Marranzino, 1968). The elements analyzed and their lower limits of determination are listed in table 1.

Spectrographic results were obtained by visual comparison of spectra derived from the sample against spectra obtained from standards made from pure oxides and carbonates. Standard concentrations are geometrically spaced over any given order of magnitude of concentration as follows: 100, 50, 20, 10, and so forth. Samples whose concentrations are estimated to fall between those values are assigned values of 70, 30, 15, and so forth. The precision of the analytical method is approximately plus or minus one reporting interval at the 83 percent confidence level and plus or minus two reporting intervals at the 96 percent confidence level (Motooka and Grimes, 1976). Values determined for the major elements, iron, magnesium, calcium, and titanium, are given in weight percent; all others are given in parts per million (micrograms/gram). Analytical data for samples from the Craig Study Area are listed in tables 3, and 4.

Chemical methods

Other methods of analysis used on samples from the Craig Study Area are summarized in table 2.

Analytical results for stream-sediment and heavy-mineral-concentrate samples are listed in tables 3 and 4 respectively.

DATA STORAGE SYSTEM

Upon completion of all analytical work, the analytical results were entered into the Branch of Geochemistry computer data base called PLUTO. This data base contains both descriptive geological information and analytical data. Any or all of this information may be retrieved and converted to a binary form (STATPAC) for computerized statistical analysis or publication (VanTrump and Miesch, 1977).

DESCRIPTION OF DATA TABLES

Tables 3 and 4 list the results of analyses for the samples of stream sediment and heavy-mineral concentrate, respectively. For the two tables, the data are arranged so that column 1 contains the USGS-assigned sample numbers. These numbers correspond to the numbers shown on the site location map (plate 1). Columns in which the element headings show the letter "S" below the element symbol are emission spectrographic analyses; "AA" indicates atomic absorption analyses; "ICP/p" indicates inductively coupled plasma-atomic emission spectroscopy, partial analysis. A letter "N" in the tables indicates that a given element was looked for but not detected at the lower limit of determination shown for that element in table 1. For emission spectrographic analyses, a "less than" symbol (<) entered in the tables in front of the lower limit of determination indicates that an element was observed but was below the lowest reporting value. For AA and |CP| analyses, a "less than" symbol $(\langle \rangle)$ entered in the tables in front of the lower limit of determination indicates that an element was below the lowest reporting value. If an element was observed but was above the highest reporting value, a "greater than" symbol (>) was entered in the tables in front of the upper limit of determination. if an element was not looked for in a sample, two dashes (--) are entered in tables 3 and 4 in place of an analytical value.

REFERENCES CITED

- Berg, H.C., Jones, D.L., and Coney, P.J., 1978, Map showing Pre-Cenozoic tectonostratigraphic terranes of southeastern Alaska and adjacent areas: U.S. Geological Survey Open-File Report 78~1085, scale 1:1,000,000, 2 sheets.
- Berg, J.C., Jones, D.L., and Richter, D.H., 1972, Gravin-Nutzotin belt, Tectonic significance of an upper Mesozoic sedimentary and volcanic sequence in southern and southeastern Alaska in Geological Survey research 1972: U.S. Geological Survey Professional Paper 800-D, p. D1-D24.
- Brew, C.A. and Ford, A.B., 1984, Tectonostratigraphic terraines in the Coast plutonic-metamorphic complex, southeastern Alaska, in Bartsch-Winkler, S., and Reed, K.M., eds., The United States Geological Survey in Alaska: Miscellaneous geologic research 1982: U.S. Geological Survey Circular 939, p. 90-93.
- Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.
- Koirtyohann, S. R., and Khalil, Moheb, 1976, Variables in the determination of mercury by cold vapor atomic absorption: Analytical Chemistry, 48, p. 136-139.
- McDanal, S.K., Arbogast, B.F., and Cathrall, J.B., 1991, Analytical results and sample locality map of stream-sediment and heavy-mineralconcentrate samples from the Craig Study Area; Craig, Dixon Entrance, Ketchikan, and Prince Rupert quadrangles, Alaska: U.S. Geological Survey Open-File Report 91-36A, p. 122.
- Monger, J.W.H. and Berg, W.C., 1987, Lithotectonic terrane map of western Canada and southeastern Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF 1874-Bm 21 p., scale 1:2,500,000.
- Motooka, J.M., 1988, An exloration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES: Applied Spectroscopy, v. 42, no. 7, p. 1293-1296.
- Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analyses: U.S. Geological Survey Circular 738, 25 p.
- Thompson, C. E., Nakagawa, H. M., and Van Sickle, G. H., 1968, Rapid analysis for gold in geologic materials, <u>in</u> Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-B, p. B130-B132.
- VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geosciences, v. 3, p. 475-488.
- Wahrhatig, Clyde, 1965, Phhsiographic divisions of Alaska: U.S. Geological Survey Professional Paper 482, 52 p., 6 plates.

TABLE 1.--Limits of determination for the spectrographic analysis of stream sediments, based on a 10-mg sample

[The values shown are the lower limits of determination assigned by the Grimes and Marranzino method, except for those values in parentheses, which are the lower values assigned by the Myers and others method. The spectrographic limits of determination for heavy-mineral-concentrate samples are based on a 5-mg sample, and are therefore two reporting intervals higher than the limits given for rocks.]

Elements	Lower determination limit	Upper determination limit
	Percent	
Iron (Fe)	0.05	20
Magnesium (Mg)	0.02	10
Phosphorus (P)	0.2	10
Calcium (Ca)	0.05	20
Sodium (Na)	0.2	5
Titanium (Ti)	0.002	1
	Parts per mill	ion
Manganese (Mn)	10	5,000
Silver (Ag)	0.5	5,000
Arsenic (As)	200	10,000
Gold (Au)	10	500
Boron (B)	10	2,000
B a rium (Ba)	20	5,000
Beryllium (Be)	1	1,000
Bismuth (Bi)	10	1,000
Cadmium (Cd)	20	500
Cobalt (Co)	5	2,000
Chromium (Cr)	10	5,000
Copper (Cu)	5	20,000
Gallium (Ga)	5	500
Germanium (Ge)	10	100
Lanthanum (La)	20	1,000
Molybdenum (Mo)	5	2,000
Niobium (Nb)	20	2,000
Nickel (Ni)	5	5,000
Lead (Pb)	10	20,000
Antimony (Sb)	100	10,000
Scandium (Sc)	5	100
Tin (Sn)	10	1,000
Strontium (Sr)	100	5,000
Vanadium (V)	10	10,000
Tungsten (W)	50	10,000
Yttrium (Y)	10	2,000
Zinc (Zn)	200	10,000
Zirconium (Zr)	10	1,000
Thorium (Th)	100	2,000

TABLE 2.--Chemical methods used

[AA = atomic absorption; ICP = inductively coupled plasma spectroscopy]

Element or constituent determined	Sample type	Method	Determination limit (micrograms/ gram or ppm)	Reference
Gold (Au)	stream sediments	AA	. 1	Modification of Thompson and others, 1968.
Mercury (Hg)	stream sediments	AA	0.02	Koirtyohann and Khalil, 1976.
Silver (Ag) Arsenic (As) Gold (Au) Bismuth (Bi) Cadmium (Cd) Copper (Cu) Molybdenum (Mo) Lead (Pb) Antimony (Sb) Zinc (Zn)	stream sediments	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.045 0.6 0.15 0.06 0.05 0.05 0.09 0.6 0.6 0.05	Motooka,1988.

Table 3. RESULTS OF ANALYSIS OF STREAM-SEDIMENT SAMPLES '
(N, not detected: (, detected but below the limit of determination shown:), determined to be greater than the value shown.)

Field Number	Lab No	Lat	Long	Ag-pp¢ ICP/p	As~ppa ICP/p	Ац-рра ІСР/р	Bi-ppo ICP/p	Cd-ppm ICP/p	Cu-ppm ICP/p	Ко-рра ICP/р	РЬ-рра 1СР/р	Sb-ppo ICP/p	ζη-ρρφ Ιςρ/ρ	Ca-pet, S	Fe-pct. S
940	0-382802	553740	1323340	0.22	2.5	N 0.10	N Q.67	0.26	97	0.61	8.6	0.94	34	1	1
944	0-382803		1323422	0.086	6.2	N 0.10	N 0.67	0.30	56	0.55	6.2	0,80	79	1	7
945	D-382604		1323030	0.15	7.7	N 0.10	1.1	0.070	34	1.7	6.7	1.2	13	3	7
946	0-382805		1323855	N 0.067	2.6	N 0.10	N Q.67	0.15	46	0,39	6.3	1.1	56	7	10
946A	D-382806	555312	1323855	N Q.067	1.2	N 0.10	N 0.67	0.11	23	0.36	3.5	N 0.67	23	5	7
947	0-382807	555330	1324320	N 0.067	2.i	N 0.10	N 0.67	0.099	39	0.78	3.1	0.80	55	2	7
948	0-382808	555448	1324512	N 0.067	5.5	N 0.10	N 0.67	0.33	49	0.30	8.8	2,5	92	7	10
949	0-382809	552930	1325730	0.22	19	N 0.10	N 0.67	2.7	44	5.9	17	3,8	· 310	1.5	7
950	0-382810	552955	1325850	0.21	13	N 0.10	N 0,67	1.7	20	6.1	23	5.7	270	1	7
951	D-382811	552837	1325940	0.94	21	N 0,10	N 0.67	2.6	86	7.9	36	14	530	1.5	7
952	0-382812	553108	1330150	0,22	23	N 0.10	N 0.67	1,1	12	3.4	51	4.8	320	0.7	10
953	D-382813	553005	1330435	N 0.067	3.4	N 0.10	N 0.67	0.66	22	3.2	4.8	1.6	140	1,5	10
954	0-382814		1330540	0.14	52	N 0.10	N 0.67	1.0	21	3.6	18	2,2	210	3	10
954A	D-382815		1332540	0.14	46	N 0,10	N 0.67	0.89	20	3.0	16	2.2	200	2	· 10
955	0~382816		1330558	0.33	13	N 0.10	N 0.67	3.3	25	1.9	24	3.6	370	1.5	7
956	0-382817		1330640	1.1	10	N 0.10	N 0.67	3.5	54	7.9	71	5,5	580	1	7
957	D-382816		1330130	0.58	26	N 0.10	N 0.67	13	61	21	21	14	910	0.7	10
958	D-382819		1330130	N 0.067	7.3	N 0.10	N 0.67	1.7	23	8.6	7.0	2.9	250	1.5	10
959	D-382820		1330532	0.17	11	N 0.10	N 0.67	4.3	27	8.5	8.4	5.1	470	1	7
960	0-382821		1330410	0.096	5.5	N 0.10	N 0.67	1.5	24	7,5	6.6	2,8	200	1.5	7
961	D-382822		1325812	0.22	12	N 0.10	N 0.67	0.60	29	5.9	6.2	1.9	130	0.5	7
962	0-382823		1330525	0.094	11	N 0.10	N 0.67	0.37	14	2.6	8.7	0.76	89	2	10
963	0-382824		1330503	N 0.067	6.1	N 0.10	N 0.67	0.16	14	1.1	4.6	0.84	58	2	10
964	D-382825		1330450	N 0.067	5.6	N 0.10	N 0.67	0,077	15	3.8	10	0.67 K	53	3	7
965 N	0-382826.		1325140	0.079	8,4	N 0.10	N 0.67	0.20	71	2.9	5,8	1.1	69	1.5	10
966	0-382827		1325040	0.18	16	N 0.10	N 0.67	0.36	83	1.6	6.7	2.0	94	- 1	10
967 968	D-382828 D-382829		1325100	0.24 N 0.067	7,3 31	N 0.10 N 0.10	0.86 N 0.67	0.47	130	1.6	4.8	1.3	110	1	10
700 969	D-382830		1323055 1322950	N 0.067	7.2	N 0.10	N 0.67	0.12 0.17	62 27	1.7 1.9	5,5 6.6	N 0.67 N 0.67	61 72	3 2	20
970	D-382831		1323140	N 0.067	2.8	N 0.10	N 0.67	0.21	33	0.93	4.8	N 0.67	100	5	10 10
971	0~382832		1324035	N 0.067	3.5	N 0.10	N 0.67	0.24	110	0.35	11	0.79	80	5	10
972	D-382833		1323930	0.099	32	N 0.10	N 0.67	0.38	54	2.0	6.1	0.91	62	1.5	10
973	0-382834		1323908	0.10	7.7	N 0.10	N 0.67	0.44	61	0.89	4,8	0.79	120	3	15
974	0-382835		1323850	0.15	10	N 0.10	N 0.67	0.62	110	1,2	6.1	1.2	150	5	15
975	D-382836		1323345	N 0.067	3.8	N 0.10	N 0.67	0.17	29	2.0	4,5	₩ 0.67	64	5	15
976	0-382837		1324940	0.081	4.2	N 0,10	N 0.67	0.24	51	0.66	6.6	0,87	86	3	7
977	D-382838		1324958	0.92	31	0.43	N 0.67	1,5	70	2.9	43	3,9	240	2	10
9 78	D-382839		1325250	N 0.067	2.1	N 0.10	N 0.67	0.18	97	3.6	2.5	0.82	49	7	10
97 9	0-382840	553330	1325350	N 0.067	5.4	N 0.10	N 0.67	0.15	91	16	3,1	N 0.67	46	5	10
980	0-382841	553415	1325505	N 0.067	26	N 0.10	N 0.67	0.34	68	1.7	4.0	N 0.67	84	1.5	5
981	0-382842	553450	1325530	0.17	33	N 0.10	N 0.67	1.2	80	2.8	15	2.5	170	5	10
982	D-382843	553448	1325515	N 0.067	1.9	N 0.10	N 0.67	0.081	61	1.8	2.0	N 0.67	32	7	10
983	0-382844	553708	1325542	N 0.067	12	N 0.10	N 0.67	0.28	67	1.1	8.0	1.3	89	2	7
984	D~382845	554800	1330750	0.079	2.7	N 0.10	N Q.67	0,28	25	0.89	8.7	0.73	66	1	2
985	0-382846	554800	1330910	N 0.067	5.2	N 0.10	N 0.67	0.23	49	0.58	8.2	N 0.67	95	2	10
986	D-382847		1331150	N 0.067	6.0	N 0.10	N 0.67	0.30	29	1.4	5.7	0.79	34	20	5
987	D-382849		1331235	N 0.067	7.2	N 0.10	N 0.67	0.22	37	0.85	7.7	0.78	84	3	7
988	D-382849		1331230	0,095	4.0	N 0.10	N 0.67	0.36	44	0.96	9.2	0.81	44	1	3
989	D-392850		1331250	N 0.067	7.9	N 0.10	N 0.67	0.29	53	1.1	9.9	0.80	85	2	7
990	D~382851		1331240	₩ 0.067	3.2	N 0.10	N 0.67	0.16	43	0.55	12	1.4	100	1.5	15
991	0-382852	\$52237	1325810	24	45	N 1.1	N 7.0	33	4100	39	140	9.6	3100	0.1	15

10

.

Table 3. continued - RESULTS OF ANALYSIS OF STREAM-SEDIMENT SAMPLES

,

.

)

Field	Kg-pct.	Na-pct.	P-pct.	Ti - pct.	Ag-ppa	As-pp	Au-pps	8-pp n	8a-ppa	Be-ppn	ві-ров	Cd-ppa	Co-ppn	Cr-ppn	Cu-ppm
Number	S	\$	S	S	S	\$	\$	\$	\$	\$	\$	5	S	\$	\$
940	0.2	0.2	(0,2	0.1	N 0.5	N 200	N 10	(10	150	(1	N 10	N 20	(10	10	50
944	0,7	0.7	{ 0.2	0.5	K 0.5	N 200	N 10	15	150	∦ 1	N 10	N 20	10	100	50
945	3	2	(0,2	0,5	N 0.5	N 200	N 10	20	500	N 1	N 10	H 20	30	100	70
946	3	1	(0.2	0,5	N 0.5	N 200	N 10	10	200	N 1	N 10	∦ 20	30	150	100
946A	2	1	N 0.2	0.3	N 0.5	N 200	N 10	15	200	(1	N 10	N 20	10	100	30
947	5	1.5	(0.2	1	(0.5	N 200	10 א	15	100	(1	N 10	N 20	50	200	100
948	5	1.5	N 0.2	0,5	N 0.5	N 200	N 10	10	300	N 1	N 10	N 20	30	500	70
949	2	1.5	0.2	0.7	N 0.5	N 200	N 10	50	500	1	N 10	N 20	20	70	50
950	2	1.5	(0.2) 1	N 0.5	N 200	N 10	30	1500	()	N 10	N 20	30	100	20
951	2	1	(0.2	1	0.5	N 200	N 10	70	1500	3	N 10	N 20	30	300	150
952	2	1	Ō.2) 1	(0.5	N 200	N 10	50	1000	N 1	N 10	N 20	30	100	20
953	3	1	Ö.2	> 1	N 0.5	N 200	N 10	30	1000	N 1	N 10	N 20	30	150	20
954	3	1.5	< 0.2	0,7	N 0.5	N 200	N 10	50	700	(1	N 10	N 20	20	70	30
954A	2	2	0.2	0.7	N. 0.5	N 200	N 10	50	700	(1	N 10	N 20	20	70	30
955	2	1,5	0.2	0.5	N 0.5	N 200	N 10	50	700	1	₩ 10	N 20	15	50	30
956	0.7	0.7	0.3	0.5	1.5	N 200	₩ 10	70	500	1	N 10	N 20	15	70	50
957	1.5	0.7	0.3	1	1	K 200	N 10	70	1000	N 1	N 10	N 20	20	100	100
958	3	1	0.3	> 1	N 0.5	N 200	N 10	30	1000	N 1	N 10	N 20	30	200	30
959	2	i	0.2	> >	N 0.5	N 200	N 10	50	1000	N 1	N 10	N 20	20	150	50
960	1	0.7	0.2) 1	N 0.5	N 200	N 10	15	500	(1	N 10	N 20	15	70	20
961	0,7	1	(0.2	0.5	N 0.5	N 200	N 10	30	300	< 1	N 10	N 20	10	30	50
962	2	2	(0.2	1	N 0.5	N 200	N 10	30	7 0 0	N 1	N 10	N 20	15	70	30
963	2	2	0.2	1	N 0.5	N 200	N 10	30	700	1 א	N 10	N 20	15	100	30
964	3	2	(0.2	1	N 0.5	N 200	N 10	30	700	(1	N EO	N 20	15	700	30
965	2	1.5	(0.2	1	N 0.5	N 200	N 10	15	200	(1	N 10	N 20	30	100	100
966	3	1.5	< 0.2	1	N 0.5	N 200	N 10	30	700	(1	N 10	N 20	30	500	150
967	2	1.5	(0.2	1	0.7	N 200	N 10	20	500	(1	N 10-	N 20	20	100	200
%8	3	1.5	0.3	0.5	N 0.5	N 200	N 10	15	500	(1	N 10	H 20	30	200	100
969	2	2	0.2	0.7	N 0.5	N 200	N 10	10	500	1	N 10	N 20	50	100	50
970	5	2	0.3	0.7	5	N 200	N 10	_ 20	500	(1	H 10	N 20	50	500	70
971	1	2	0.5	0.7	N 0.5	N 200	N 10	15	700	1	N 10	N 20	50	700	150
972	i r	1	0.2	0.2	N 0.5	N 200	N 10	15	200	(1	10 א א גע	N 20	10	100	70
973 074	5 S	1.5	0.2	í	N 0.5	N 200	N 10	30	500	1 K	N 10	N 20	30	500	100
974 975		1.5	0.5	1	N 0.5	N 200 N 200	N 10 N 10	20	500	(1	N 10	N 20 N 20	50	500	200
975 976	3	· 2 2	0.7 0.3) 1 1	N 0.5 N 0.5	N 200	N 10	20 50	500 700	1 א 1	N 10 N 10	N 20	30 20	300 70	50 70
977	2	2	0,5	1	к v.5 1	N 200	N 10	50	700	(j	N 10	N 20	20 20	70	150
978	2	2	0.2	0.3	N 0.5	N 200	N 10	(10	200	N 1	10 K	N 20	20	50	100
979	3	2	(0.2	0.5	N 0,5	N 200	N 10	(10	300	NI	N 10	N 20	30	50	100
980	1	1	(0.2	0.3	N 0,5	N 200	N 10	(10	150	(L	N 10	N 20	15	15	50
961	3	1.5	(0.2	0.5	N 0.5	N 200	N 10	20	300	NÍ	N 10	N 20	50	100	70
982	Ĵ	2	(0.2	0.5	N 0.5	N 200	N 10	10	300	₩1	N 10	N 20	20	30	70
983	2	1.5	(0,2	0.5	N 0,5	N 200	N 10	30	300	N 1	N 10	N 20	20	30	70
984	0.5	0.7	0.3	0.5	N 0.5	N 200	N 10	15	200	Ĩ	N 10	N 20	(10	15	15
985	3	1.5	0.2	1	N 0.5	N 200	N 10	30	200	NI	N 10	N 20	50	150	70
986	1.5	1	N 0.2	0.3	N 0.5	N 200	N 10	20	150	N 1	N 10	N 20	10	70	30
987	3	1.5	(0.2	0.7	N 0.5	N 200	N 10	30	300	(1	N 10	N 20	20	200	50
988	0.5	0.5	(0.2	0.3	N 0.5	N 200	N 10	30	200	1	N 10	N 20	15	50	30
989	2	1	0.3	0,5	N 0.5	N 200	N 10	50	300	i	N 10	N 20	20	200	70
990	1	t	0.5) 1	K 0,5	N 200	H 10	50	300	N 1	N 10	H 20	20	70	50
991	3	0.7	N 0.2	0.2	10	N 200	H 10	20	100	1	N 10	100	10	10	7000

Table 3. continued - RESULTS OF ANALYSIS OF STREAM-SEDIMENT SAMPLES

,

-

Field	Ga-ppm	Ge-ppm	La-ppm	Má-ppa	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm	Th-ppm	V-ppm	₩-ppm
Number	\$	S	S	S	S	S	S	\$	S	S	S	S	\$	\$	5
940	7	N 10	N 50	150	N 5	N 20	(5	(10	N 100	(5	N 10	(100	N 100	50	N 20
944	50	N 10	N 50	150	N 5	N 20	10	15	N 100	10	N 10	100	N 100	300	N 20
945	30	N 10	N 50	2000	N 5	N 20	30	15	N 100	15	N 10	300	N 100	200	N 20
946	30	N 10	N 50	2000	N 5	N 20	50	15	N 100	20	N 10	300	N 100	300	N 20
946A	30	N 10	N 50	1500	N 5	N 20	20	10	N 100	15	N 10	300	N 100	200	N 20
947	30	N 10	(50	1500	N 5	N 20	100	10	N 100	20	N 10	200	N 100	200	N 20
948	50	N 10	N 50	2000	N 5	N 20	70	20	N 100	30	N 10	300	N 100	300	N 20
949	30	N 10	(50	2000	5	N 20	50	20	N 100	10	N 10	100	N 100	300	N 20
950	50	N 10	N 50	> 5000	(5	(20	50	30	N 100	10	N 10	(100	N 100	200	N 20
951	50	N 10	(50	3000	5	(20	200	50	N 100	10	N 10	100	N 100	150	N 20
952	50	N 10	(50	2000	N 5	20	30	70	N 100	7	N 10	100	N 100	200	N 20
953	30	N 10	N 50	1000	(5	(20	50	(10	N 100	10	N 10	150	N 100	200	N 20
954	50	N 10	(50	5000	N 5	N 20	20	30	N 100	10	N 10	200	N 100	150	N 20
954A	50	N 10	(50	3000	(5	N 20	20	20	N 100	10	N 10	300	N 100	200	N 20
955	20	N 10	(50	5000	5	N 20	30	20	N 100	10	N 10	200	N 100	200	N 20
956	20	N 10	(50	3000	7	N 20	100	50	N 100	10	N 10	100	N 100	150	N 20
957	30	N 10	(50	1500	15	(20	150	20	N 100	10	N 10	100	N 100	1500	N 20
958	30	N 10	N 50	2000	5	(20	70	10	N 100	15	N 10	100	N 100	300	N 20
959	30	N 10	(50	1500	7	N 20	100	10	N 100	10	N 10	100	N 100	700	N 20
960	20	N 10	N 50	2000	(5	(20	30	(10	N 100	7	N 10	100	N 100	500	N 20
961	20	N 10	N 50	1500	(5	N 20	15	10	N 100	10	N 10	(100	N 100	500	N 20
962	30	N 10	N 50	1500	N 5	(20 N 20	30	15	N 100	15	N 10	200	N 100	300	N 20
963 074	30	N 10	N 50	1500	N 5	N 20	20	10	N 100	20	N 10	200	N 100	500	N 20
964 965	50 50	N 10 N 10	N 50 N 50	700 3000	5 N 5	N 20	20 30	20 15	N 100	20	N 10 N 10	300 100	N 100	300	N 20
703 966	50 50	N 10	N 50	1500	N 5	N 20 N 20	150	15	N 100 N 100	20 30	N 10	N 100	N 100 N 100	300	N 20 N 20
967	30	N 10	N 50	> 5000	N 5	N 20	30	15	N 100	20	N 10	N 100	N 100	500 200	N 20
968	50	N 10	N 50	2000	N 5	N 20	50	20	N 100	20	N 10	300	N 100	300	N 20
969	30	N 10	N 50	> 5000	N 5	20	20	20	N 100	15	N 10	200	N 100	200	N 20
970	50	N 10	N 50	> 5000	N 5	(20	70	20	N 100	30	N 10	300	N 100	300	N 20
971	50	N 10	N 50	2000	N 5	N 20	70	20	N 100	30	N 10	300	N 100	300	N 20
972	20	N 10	N 50	1500	N 5	N 20	15	15	N 100	10	N 10	100	N 100	200	N 20
973	30	N 10	N 50	2000	N 5	N 20	100	15	N 100	30	N 10	200	N 100	300	N 20
974	50	N 10	N 50	2000	N 5	N 20	100	15	N 100	30	N 10	200	N 100	300	N 20
975	50	N 10	50	3000	N 5	30	50	15	N 100	20	N 10	200	N 100	200	N 20
976	70	N 10	(50	2000	N 5	N 20	30	15	N 100	15	N 10	200	N 100	300	N 20
977	50	N 10	(50	1500	N 5	N 20	20	70	N 100	15	30	150	N 100	500	N 20
978	50	N 10	N 50	1000	(5	N 20	10	- 10	N 100	30	N 10	150	N 100	300	N 20
979	30	N 10	N 50	2000	10	N 20	20	10	N 100	7	N 10	300	N 100	200	N 20
980	20	N 10	N 50	1000	N 5	N 20	7	10	N 100	20	N 10	150	N 100	200	N 20
981	30	N 10	N 50	5000	N 5	N 20	30	20	N 100	20	N 10	200	N 100	300	N 20
982	30	N 10	N 50	1500	N 5	N 20	15	10	N 100	20	N 10	300	N 100	300	N 20
983	20	N 10	N 50	1500	N 5	N 20	20	15	N 100	15	N 10	200	N 100	300	N 20
984	15	N 10	N 50	700	N 5	(20	5	15	N 100	(5	N 10	100	N 100	50	N 20
985 997	50	N 10	N 50	700	N 5	N 20	70	15	N 100	15	N 10	100	N 100	200	N 20
986 997	20	N 10	N 50	1500	N S	N 20	15	15	N 100	10	N 10	200	N 100	100	N 20
987	30	N 10	N 50	1500	N 5	N 20	50	15	N 100	20	N 10	200	N 100	200	N 20
988 989	15	N 10 N 10	N 50	> 5000	N 5 N 5	N 20	10	10	N 100	5	N 10	100	N 100	150	N 20
989 990	30 30	N 10	(50 (50	1000 1000	N S	N 20 N 20	50 20	15 20	N 100 N 100	15	N 10	200	N 100	200	N 20 N 20
990 991	30 70	N 10	N 50	> 5000	мэ 15	N 20	20 N 5	20 100	N 100	10 5	N 10	200 N 100	N 100 N 100	300 50	N 20
771	,0	14 10	N QU	7 3000	13	11 20		100	N 100	5	N 10	N 100	N 100	50	11 20

.

12

•

Table 3. continued - RESULTS OF ANALYSIS OF STREAM-SEDIMENT SAMPLES

-

.

.

4

Field	¥-рра	Zn-ppm	Zr-ppm	Åu-pp∰	Нд-рры
Number	\$	5	\$	ÂÂ	AA
940	(10	N 200	10	₩ 0.33	1.1
944	(10	N 200	30	N 0.05	0.03
945	20	N 200	70	N 0.05	0.15
946	15	N 200	20	N 0.20	0.04
946A	10	N 200	20	N 0.05	0.08
947	15	N 200	50	N 0.10	0.03
948	15	N 200	30	N 0.05	0.15
949	15	N 200	30	N 0.10	0.05
950	10	N 200	100	N 0.05	0.05
951	20	(200	150	N Q.05	0.17
952	15	(200	200	N 0.05	0.05
953	15	N 200	150	N 0.05	0.06
954	15	N 200	50	N 0.05	0.07
954A	15	N 200	100	N 0.05	0.06
955	15	N 200	200	N 0.05	0.10
956	20	300	150	N 0.05	0.37
957	20	700	200	R 0,05	. 0.20
95B	15	N 200	150	N 0.05 N 0.05	0.09
959	20	200	150 150	N 0.05	0.19
960	15 15	N 200 N 200	100	N 0.05	0.14 0.13
961	15	N 200	150	N 0.05	0.05
962 963	15	N 200	100	N 0.05	0.03
964	15	N 200	150	N 0.05	0.02
965	20	N 200	100	N 0,05	0.06
966	20	N 200	100	N 0.05	0.03
967	20	N 200	100	0.05	0.13
968	15	N 200	50	N 0.05	N 0.02
969	15	N 200	300	N 0.05	0.06
970	20	N 200	100	N 0,10	0,02
• 971	20	N 200	50	N 0.05	N 0.02
972	15	N 200	30	N 0.05	0.08
973	20	N 200	50	N 0.05	0.02
974	20	N 200	50	N 0.05	0.03
975	30	N 200) 1000	N 0.05	0.04
976	15	N 200	70	N 0.05	0.05
977	20	(200	70	0.90	0.05
978	15	N 200	100	N 0.05	0.04
979	15	N 200	30	N 0.05	0.03
980	10	N 200	30	N 0.10	0.10
981	15	N 200	20	N 0.05	0,02
982	20	N 200	70	N 0.05	N 0.02
983	15	N 200	50	N 0.05	0.06
984	(10	N 200	70	N 0.05	0.16
985 887	20	N 200	50	80.05 80.05	0.09
986	10	N 200	30	N 0.05	0.09
987 999	15	N 200	50 30	N 0.20	0.06
988 989	(10) 15	N 200 N 200	30 70	N 0.10 N 0.05	0.22 0.11
989 990	15	N 200	50	N 0.05	0.11
991	100	10000	500	0,25	3.3
//1	100	10000	200	, .	•.•

_____.

Table 4. RESULTS OF ANALYSIS OF HEAVY-HINERAL-CONCENTRATE SAMPLES [N, not detected; (, detected but below the limit of determination shown;), determined to be greater than the value shown.]

.

Field Number	Lab No	Lat	Long	Ca-pct. S	Fe-pct. S	Ng−pct. S	Na-pct. S	₽-pct. S	Ti-pct. S	Ag-ppid S	As∹pp∎ S	Au-ppa S	8-pps S	Ba-ppn S	Be−ppen S
MANDEL				5	•	J	J	0	Ŭ	·	·	·	-	Ţ	
940	0-382853	553740	1323340	15	20	10	0.5	N 0.5	2	<u>א</u> 1	N 500	₩ 20	20	100	N 2
941	D-382854	552810	1324217	1) 50	0.2	(0.5	N 0.5	0.5	50	1000	N 20	20	10000	X 2
942	0-382855	552815	1324219	0.2	50	0.2	N Q.5	N 0.5	> 2	10	700	N 20	20	700	N 2
943	D-382856	552820	1324222	0,1	> 50	0.05	(0,5	N 0.5	0.1	30	1000	N 20	{ 20	150	N 2
944	0-382857	553810	1323422	10	20	5	0.7	₩ 0.5	2	₩ 1	N 500	N 20	30	200	2 א
945	D-382858	553728	1323030	10	30	5	0.5	N 0.5	> 2	N 1	N 500	N 20	50	200	N 2
946	0-382859	555312	1323855	10	15	3	0,5	N 0.5	i	₩ 1	N 500	N 20	(20	200	N 2
946A	D-382860	555312	1323855	15	15	3	0.5	N 0.5	0.7	(1	N 500	N 20	30	200	82
947	D-382861		1324320	7	50	2	0.5	N 0.5	> 2	1	N 500	N 20	30	150	N 2
948	D-382862		1324512	15	20	7	0.5	N 0.5	1	N 1	N 500	N 20	- 20	200	₩ 2
949	0-392863		1325730	7	20	5	(0.5	N 0.5) 2	(1	N 500	₩ 20	50	300	N 2
950	D-382864		1325850	7	30	5	0.5	N 0.5) 2	{ 1	N 500	N 20	20) 10000	N 2
951	0-382865		1325940	7	30	5	(0.5	N 0.5) 2	3	N 500	N 20	20) 10000	. (2
952	0-382866		1330150	15	15	10	0.5	N 0.5	> 2	N 1	N 500	N 20	(20	700	N 2
953	D-382867		1330435	10	20	7	(0.5	N 0.5) 2	(1	N 500	₩ 20	30	500	N 2
954	0-382868		1330540	10	30	5	0.5	N 0.5	> 2	N 1	N 500	₩ 20	50	300	N 2
955	0-382869		1330558	10	30	5	0.5	N 0.5	> 2	5	N 500	N 20	70	500	2 لا
956	0-382870		1330640	10	50	5	0.5	N 0.5) 2	()	N 500	₩ 20	(20	2000	₩ 2
958	0-382871		1330130	15	15	10	0.5	N 0.5	> 2	N 1	N 500	8 20	20	500	N 2
959	0-382872		1330532	10	30	7	0.5	N 0.5	> 2	(1	N 500	N 20	20	5000	N 2
960	D-382873		1330410	10	20	7	(0.5	₩ 0.5	> 2	N 1	N 500	N 20	20	200	X 2
961	D-382874		1325812	7	20	7	0.5	N 0.5) 2	NI	N 500	N 20	200	200	NZ
962	D-382875		1330525	10	30	5	(0.5	N 0.5) 2	1 א	N 500	N 20	70	150	X 2
963	0-382876		1330503	10	30	7	0,5	N 0.5	> 2	1 1	N 500	N 20	50	300	N 2 N 2
964	0-382877		1330450	10	20	7	0.5	N 0.5) 2	NI	N 500	₩ 20	50	500	
965	D-382878		1325140	10	30	3	0.5	N 0.5	> 2	N 1	N 500	N 20	70	150	N 2 N 2
966	0-382879		1325040	5	50	2	0.5	N 0.5	2	300	N 500	100	70	1500	N 2
967	0-382880		1325100	3) 50	1	(0.5	N 0.5) 2 1.5	2 ₹1	N 500 N 500	¥ 20 N 20	20 50	150 200	₩ 2
968 960	0-382881		1323055	10 10	20 20	5 7	0.5 0.7	N 0.5 N 0.5	> 2	N 1	N 500	N 20	20	200	N 2
969 070	0-382682		1322950	10	15	7	0.5	N 0.5	2	NI	N 500	N 20	50	200	N 2
970 070	D-382883 D-382884		1323140 1323908	7	20	7	0.5	N 0.5	> 2	Ni	N 500	K 20	70	150	N 2
973 974	0~382885		1323850	15	15	, 7	1	N Q.5	1.5	Ni	N 500	N 20	70	200	ж 2 Х
975	0-382886		1323345	7	20	5	(0.5	(0.5	> 2	NI	N 500	N 20	50	150	N 2
976	0-382887		1324940	10	20	Š	0.5	N 0.5	> 2	N 1	N SOO	X 20	150	2000	N 2
977	D-382888		1324958	7	50	3	0.5	N 0.5	> 2	200	N 500	150	30	2000	N 2
978	0~392889		1325250	10	50	5	0.5	N 0.5) 2	₩ 1	N 500	N 20	< 20	150	N 2
979	0~382890		1325350	10	30	7	0.7	N 0.5	2	N 1	N 500	N 20	(20	200	N 2
980	0-382891		1325505	7	50	3	0,5	N 0.5	2	N 1	N 500	N 20	20	200	N 2
981	0-382892		1325530	7	20	5	0.5	N 0.5	2	N 1	(500	N 20	(20	200	N 2
982	0-382893		1325515	7	30	2	0.7	N 0.5	0.7	₩ 1	N 500	N 20	(20	100	X 2
983	0-382894		1325542	10	20	ŝ	0.5	N 0.5	> 2	N 1	N 500	N 20	20	300	H 2
985	0-382895		1330910	7	20	3	0.5	N 0.5) 2	N 1	N 500	N 20	20	150	N 2
986	D~3828%		1331150	10	30	5	0.5	N 0,5) 2	1 א	N 500	N 20	70	200	2 א
987	0-382897		1331235	10	20	5	(0.5	N 0.5	2	(1	N 500	N 20	30	150	8 2
988	0-382898		1331230	10	20	7	(0.5	N 0.5	2	N 1	N 500	N 20	50	300	(2

Table 4
continued
RESULTS
ନ୍ନ
ANALYSIS (
କ୍କ
HEAVY HINERAL
(INERAL-
CONCENT
RATE
SAMPLES

38 8	987	3 86	58 5	æ	963 25	98 1	88	979	978	977	376	975	974	973	970	636	ž	% 7	\$	85	£	ž	£	96 1	ğ	959	958	35 6	28	2	253	32	<u>8</u>	83	949	010	647 F			9	2	£ ;	8	945	940	Number	Field	
																																	¥:													5	eddYB	•
N 20	92 N	N 50	N 50	N 50	N 50	N 50	N 20	N 50	N 50	¥ 50	N 50	N 50	H 50	N 50	¥ 50	N 50	x S	N 50	N 20	N 50	N 50	N 50	N 50	N 50	N 50	N 50	N 50	N 80	92 H	N 50	¥ 50	N 55	*: 82	* : 5 S	s s	5	* : S :	= ج	5 2	z : 5 :	× 8	8	100	ŝ	N 50	s	Cd-pp#	*
8	૪	8	S	70	૪	8	8	8	100	ğ	æ	30	જ	જ	8	8	Ş	õ	50	8	8	8	g	8	70	х Х	ß	\$	ጽ	8	8	ខ	23	5	2	5	700	3 8	5 8	5	ຮີ	100	8	150	8	s	Co-ppa	
3000	1500	1500	2000	200	150	50) 50	200	ĩø	1500	700	8	1500	1500	1500	1000	1000	700	1500	1000	1000	1500	2000	5000	5000	5000	500	1000	1500	1000	500	5000	1500	200	1500	156	8	33	202	200	8	8	2	70	200		CX-bbm	
150	100	100	8	70	70	28	150	100	50	2000	1000	70	150	150	8	8	ឌ	5000	2000	150	18	70	70	8	70	100	10	100	100	8	8	8	83	1 8	รีร	2	8 :	3	is s	8	100	2000	2000	2000	100			
20	30	\$	70	8	100	8	8	8	ž0	8	ઝ	8	70	ප	8	8	8	8	8	જ	8	<u>ଝ</u>	8	ප	20	ଞ	8	5	8	8	(10	H 10	X 10	83	5 5	5 5	83	5 \$	8	5	8	N 10	10	N 10	8		6a-ppm	
M 20	N 20	N 20	N 20																							N 29							X : S :		* ×	\$! * :	8 2	× :	× : 2	z :	N 20	N 20	N 20	₩ 20	N 20		Se-ppa	
¥ 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	R 100	N 100	N 100	N 100	N 100	N 100	N 100	¥ 100	N 100	¥ 100	N 100				¥ 100	N 100	18	N 100	N 100	N 100	¥ 100	N 100	100	N 18	15	100 ×	N 100	N 100	N 100	H 100	¥ 100	N 100	N 100		La-pon	
2000	3000	2000	3000	5000	5000	5000	10000) 10000) 10000	3000	3000	5000	300	3000	5000	10000	3000	1500	1500) 10000	3000	5000	5000	3000	1500	2000	1500	S00	5000	500	öö	1500	2000	7000	500	200	200	300	300	60	300	ĬØ	8	ğ	5000		edd-lifu	
N 10	01 K	15	N 10	N 10											01 K										15	20	X 10	N 10	N 10	N 10	N 10	H 10	N 10	N 10		N 10	N 10	¥ 10	N 10	¥ 10	N 10	N 10	8	< 10	01 N		80d-04	
05 X	N 50	85 k	N SO	95 K	¥ 50 ·	95 N	к 50	95 N	N 50	95 N	95 N	150	N 50	N SO	50	100	ŝ	S ¥	N	N 50	95 M	N 55	8	N 50	N 50	62)	N 50	92 ¥	N 50	6 50	ŝ	8	ŝ	ž	5 S	* : 5 :	# : 5 :	× :	8 : S	ž	8	N S	ŝ	N 50	N 50		ecid-cau	
ĩø	6	70	70	S S	10	8	20	8	20	10	70	8	100	150	8	8	8	8	55	8	ន	ß	ß	150	200	200	200	70	ន	ន	202	200	300	10	1 0	2	1 8	8	ខ	5	8	ĩõ	8	1000	ଞ		add-TN	
ෂ	20	20	g	ප	8	8	8	20	28	38	20	28	20	8	8	8	8	8	18	8	20	8	8	8	8	8	ر م	8	30	8	8	8	50	S :	ଞ :	3	8 1	8 :	8	8	8	õ	150	200	(20)	ŝ	eddod	2
N 200	N 200	H 200	N 200	N 200	N 200	H 200	N 200	N 200	N 200	N 200	H 200	N 200	N 200															# 200				N 200	R 200	N 200	N 200	H 200	N 200	N 200	¥ 200	N 200		bod-00						
150	150	100	100	100	20	150	S	<u>8</u>	8	5	70	70	70	70	70	8	70	23	20	8	ĩ	70	g	100	150	70	200	8	70	8	8	100	8	8	8	70	8:	70	\$	70	70	N 10	10	03 N	100	\$	edd~3C	^

•

Fable 4
Fable 4. continued -
1
RESUL IS
କ
analysis o
RESULTS OF AVALYSIS OF HEAVY-MINERAL-CONCENTRATE SAMPLES
CONCENTRATE
SAMPLES

~

78 8	8	3 8	Ř	කී	ෂී	78	8	979	978	977	976	975	974	973	970	8 89	968	% 7	\$	%	¥	සී	ž	<u>8</u>	£	959	ž	3 2	3 %	ž	සී	952	5	ğ	949	948	947	946A	946	945	944	943	942	941	940	(afterta)	i i i i i	riald
H 20	* 2	8	N 20	¥ 20	N 20	N 20	N 20	N 20	N X	150	N 20	N 20	N 20	N 20	N 10	N 20	* 20	N 20	N 20	N 20	¥ 20	N X	N 20	N 20	H 20	N 20	X X	N 20	N 20	N 20	N 20	N 20	N 20	N 20	8 N	N 20	× 20	¥ 20	N 20	N 20	N 20	N 20	N 70	N 20	N 20	Ĺ	0 A 14	< <u>n−</u> 20∎
500	30	S	200	86	N 200	(200	N 200	(200	N 200	g	58	30	50	300	500	50	700	(200	N 200	ŝ	8	38	8	30	N 200	200	N 200	200	8	28	N 200	N 200	H 200	200	200	700	ş	700	Ş	Ş	700	N 200	N 200	N 200	700	c		SY-00#
N 200	N 200	N 200	N 200	¥ 200	N 200	N 200	N 200	N 200	N 200	H 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	# 200	H 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	H 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	N 200	ţ	2	75-00 0
1000	1000	1500	2000	2000	3000	2000	3000	2000	5000	55	700	ŝ	500	1000	700	8	1000	38	ğ	1500	1500	1500	1500	1000	700	700	1000	300	2000	1500	700	700	200	1000	1000	1000	1500	100	100	300	2000	8	200	ŝ	3000	ć	- 1 1	V-00#
N 50	х S	N 55	8	S X	N 20 20	N SO	85 N	95 K	N 50	200	N 50	95 N	N 50	N 55	N 20	ж 55	х Х	N SS	N 50	* 8	N 50	N 20	N 50	S K	N 8	N 50	N 50	N S.	2 X	¥ 50	N 8	<u>8</u> K	N 50	¥ ¥	N 20	N 50	N 20	ž	8 8	¥ 8	N 50	8 8	N 80	N 50	N 50	•	^	L-008
8	ප	ઝ	8	70	2 5	70	70	i00	100	g	ප	70	ж Ж	S	S	70	8	8	8	100	100	8	70	S	8	8	(28	8	5	8	8	28	8	8	70	8	70	8	8	28	8	N 20	700	20	ઝ		^ ;	800-Y
N 500	× 500	N 500	N 500	905 N	N 500	N 500	N 500	N SOO	N 500	N 500	X 500	¥ 500	N 500	¥ 500	N 500	N 500	N 500	N 500	N 500	N 500	¥ 500	N 500	N 500	N 500	H 500	N 500	¥ 500	K 500	N 500	N 500	M 500	N 500	700	N 500	X 500	N 500	N 200	N 500	N S00	N 500	N SOO	> 20000	5000	> 20000	905 N	ı	۲ م ۱	7n-oot
18	8	8	1500	700	100	1000	1000	1500) 2000	70) 2000) 2000	100	100) 2000	> 2000	2000	200	700	2000	2000) 2000	~ 2000	2000	100	1000	150	2000	2000) 2000	2000	700	30	200	2000	20	18	70	70	(20	2000	18	1500	8	8	C	י קר קר	77-00 e
N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	¥ 100	X 100	¥ 100	N 100	001 K	N 100	N 100	N 100	¥ 100	N 100	N 100	N 100	N 100	N 100	¥ 100	N 100	N 100	N 100	X 100	N 100	N 100	N 100	¥ 100	K 100	¥ 100	N 100	¥ 100	N 100	N 100	N 100	X 100	N 100	N 100	N 100	H 100	N 100		רי גיי	Pd-opa
N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	K 100	N 100	K 100	N 100	N 100	N 100	¥ 100	N 100	N 100	K 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	N 190	¥ 100	N 100	N 100	N 100	N 100	¥ 100	K 100	N 100	N 198	N ^R 100	H 100	K 100	N 100	N 100	N 100	N 100	N 100	N 100	N 100	•	2	Pt-ppg

1

. —

16