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Abstract

Volcanic eruptions pose hazards to human lives and livelihoods (Loughlin et al., 2015). To
mitigate these hazards, volcano monitoring groups aim to detect signs of unrest and eruption as
early as possible. Prior to eruption volcanoes may show various signals of unrest, including:
increased surface temperatures, surface deformation, increased seismicity, increased degassing,
and more. Here we focus on one approach to monitor volcanic unrest: detecting high-temperature
localized volcanic heat emissions, otherwise known as hotspots. The presence of hotspots can
indicate subsurface and surface volcanic processes that precede, or coincide with, eruptions.
Space-borne infrared sensors can identify hotspots in near-real-time; however, automatic hotspot
detection systems are needed to efficiently analyze the large quantities of data produced. While
hotspots have been automatically detected for over 20 years with simple thresholding algorithms,
new computer vision technologies, such as convolutional neural networks (CNNs), enable
improved detection capabilities. Here we introduce HotLINK: the Hotspot Learning and
Identification Network, a CNN-based model to detect volcanic hotspots in VIIRS (Visible
Infrared Imaging Radiometer Suite) imagery. We find that HotLINK achieves an accuracy of
96% when evaluated on a validation dataset of ~1,700 unseen images from Mount Veniaminof
and Mount Cleveland volcanoes, Alaska, and 95% when evaluated on a test dataset of ~3,000
images from six additional Alaska volcanoes (Augustine Volcano, Bogoslof Island, Okmok
Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin Volcano). Additional testing on ~700
labeled MODIS images demonstrates that our model is applicable to this sensor’s data as well,
achieving an accuracy of 98%. We apply HotLINK to 10 years of VIIRS data and 22 years of
MODIS data for the eight aforementioned Alaska volcanoes. From these time series we find that
HotLINK accurately characterizes background and eruptive periods, similar to a threshold-based
method, MIROV A, but also detects more subtle warming signals, potentially related to volcanic
unrest. In particular, analysis of the Mount Veniaminof record demonstrates that HotLINK 1s
able to detect subtle hotspot signals that are coincident with elevated seismicity, potentially
indicative of surface heating due to shallow magma intrusion and/or degassing. We identify three
advantages to our model over its predecessors: (1) the ability to detect more subtle volcanic
hotspots and produce fewer false positives, especially in daytime imagery; (2) the incorporation

of probabilistic predictions for each detection that provide a measure of detection confidence;
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and (3) its transferability to multiple sensors and multiple volcanoes without the need for
threshold tuning, suggesting the potential for global application. HotLINK is able to identify
eruptions and potentially precursory warming signals in infrared satellite data, making it a

valuable tool for monitoring volcanoes and tracking their heat released over time.



Plain Word Summary

Volcanoes are dangerous forces of nature, producing lava, explosions, and other hazards.
However, prior to erupting, volcanoes may produce various warning signals such as small
earthquakes, slight deformation of the surface, increased gas emissions, high surface
temperatures, and more, which allow for some degree of eruption forecasting. Here we focus on
one approach to volcano monitoring, detecting unusually high surface temperatures, or hotspots.
Monitoring the presence of volcanic hotspots can help us determine if a volcano is erupting or
might erupt soon. Hotspots can be detected by satellite sensors which measure infrared radiation.
Traditionally, volcanologists or simple computer programs would identify the hotspots in
infrared images. Now, advanced computer algorithms based on artificial intelligence can
accurately identify complex features in images. We applied these algorithms to improve the way
we detect volcanic hotspots. Our approach detects more subtle heat signals than other algorithms,
which is useful for detecting different types of volcanic activity and may contribute to better
forecasting of eruptions. By creating an automated method, we can also analyze more data than
would be possible manually. We use our new automated system, called HotLINK — the Hotspot
Learning and Identification Network, to detect hotspots at eight volcanoes in Alaska for the years
2000-2022. The data produced by HotLINK records multiple eruptions, and may be useful to

detect future eruptions if implemented on real time data.
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Chapter 1: Introduction

Eons before there was any life on Earth, volcanoes existed, bringing heat to the surface in
the form of molten rock from deep within the planet’s interior (Rogers, 1996). Three billion
years later the planet is entering the Anthropocene — so called because humanity has become the
dominant force changing the climate and life on our planet (Crutzen, 2006). However, despite
our capability to modify conditions on our planet, volcanoes remain a force of nature far outside
of human command. Volcanic eruptions are responsible for hundreds of deaths annually on
average over the past 400 years, and have large impacts on society, human and environmental
health, and economies (Baxter, 2005; Brown et al., 2017). In the Holocene, large eruptions have
been responsible for rapid climate forcing, famines, and destruction of entire cities (Robock,
2000; Cashman and Giordano, 2008). Incredibly rare volcanic events such as super-eruptions and
formation of large igneous provinces have played a role in mass extinction events (Ernst, 2014;
Racki, 2020). Although we have no control over the timing and magnitude of volcanic eruptions,
it is possible to forecast and mitigate some volcanic hazards (Cassidy et al., 2023). Volcano
monitoring agencies aim to understand the underlying processes that drive volcanism and detect
signs of eruption and unrest with the observations available. Their goal is to monitor volcanic
activity, forecast eruptions, identify potential hazards, and convey that information to
stakeholders to minimize the threat that volcanoes pose.

Volcano observatories look for indications of unrest that volcanoes may exhibit prior to
eruption. Potential signals of unrest include: increased surface temperatures, surface
deformation, increased seismicity, increased degassing, and more. The type, occurrence, and
frequency of unrest signals can vary substantially among different volcanoes, and as a function
of deep and shallow processes occurring at any given volcano and time. While eruptions
sometimes occur without any detectable precursory unrest signals, studies have shown that with
robust monitoring it is possible to anticipate volcanic eruptions (Sparks, 2003; Tilling, 2008;
Segall, 2013; Poland et al., 2020). A plethora of techniques are used to monitor volcanoes for the
potential precursors listed above. Early volcano monitoring tools included manual temperature
measurements of fumaroles and surface lava, seismograph stations, and simple tilt-measuring
devices (Wood, 1913). Today, many volcanoes are monitored with real-time data from

networked stations containing seismometers, global navigation satellite system receivers
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Many of the volcanic processes which release heat are eruptive, including lava flows,
pyroclastic flows, and lava dome growth (Fig. 1A,B) — all of which bring significant amounts of
magma to the surface at temperatures of 700-1300°C (Philpotts and Ague, 2022). This results in
large increases in heat emissions over the area covered by eruptive material. Heat can also be
brought to the surface through non-eruptive processes. For example, fumaroles bring exsolved
volcanic gases to the surface which can range in temperature from 100-1000°C (Allaby, 2013).
Similarly, hydrothermal systems can bring heat to the surface through magmatic or meteoric
fluids which are heated at depth and can be up to 100°C at the surface (Pipolo et al., 2017). By
detecting hotspots on volcanoes and analyzing their temperatures it is possible to identify the
type of activity occurring on the surface. Further, eruptions are often preceded by changes to the
flux and temperature of degassing and hydrothermal systems (Edmonds and Woods, 2018), for
which hotspot detections are able to provide insight. Detection of heat emissions at volcanoes —
whether high temperature and eruptive, or lower temperature and non-eruptive — can provide
many insights into the evolution and state of unrest of magmatic, volcanic, and hydrothermal
systems. Hotspot detection algorithms have been used in the past to observe thermal precursors
to eruption, track and characterize eruptions through time, quantify lava volumes, and more
(Dehn et al., 2002; Harris et al., 2009; Wright 2016; Girona et al., 2021; Chevrel et al., 2023;
Coppola et al., 2023). Due to the utility of these observations, thermal satellite data are used by
volcano observatories as a part of daily monitoring operations (Dehn et al., 2000; Dehn et al.,
2002; Harris et al., 2016; Coombs et al., 2018; Cameron et al., 2018; Coppola et al., 2020;
Pritchard et al., 2022).

1.1 Thermal remote sensing
Hotspots can be detected in infrared satellite data due to the distinct signature of their

radiation. The electromagnetic radiation produced by hotspots is characterized by Planck’s Law

(Planck, 1914), defined as
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and the development of new sensors with higher spatial and temporal resolutions. The
availability of greater quantity and quality of thermal satellite data is a boon to the volcano
monitoring community; however, it has also exceeded the capacity of human analysts. This
motivates research to automate the detection and quantification of volcanic hotspots, so that
imagery can be analyzed in near-real-time, and timely interpretations can be efficiently provided
to volcano observatory scientists to inform decision making. Automated tools can make it easier
to track real time thermal activity on volcanoes which may pose a threat, and also provide a
mechanism to generate historical time series of thermal activity for volcanoes around the world.
Observations over extended time periods can be used to determine baseline activity, identify
periods of volcanic unrest, and characterize the thermal evolution of eruptions (Dehn et al., 2002;
Wright 2016; Girona et al., 2021; Chevrel et al., 2023; Coppola et al., 2023).

In order to automate detection of hotspots, previous studies have used thresholds to
automatically identify anomalous pixels (e.g., Wright et al., 2004). For example: if the brightness
temperature of a pixel exceeds a certain value, that pixel is flagged as a hotspot. This can work to
identify volcanic hotspots in some cases, but in other instances hotspot and background pixels
can occur with similar radiance and brightness temperature values, even within the same image.
Figure 1.3 illustrates the overlap of hotspot and background pixels in MIR and TIR brightness
temperature data from Mount Veniaminof (labeling of these data is described in more detail in
section 2.4). As this figure demonstrates, a simple thresholding approach would work to identify
many hotspots with MIR brightness temperatures >330 K. However, there are many hotspot
pixels that would go undetected with this thresholding approach (Figure 1.3). Thresholding will
not work to identify the weakest thermal signals — caused by smaller hot areas or lower
temperatures, which are the type of signals we expect to accompany precursory volcanic unrest.
To address this issue many automated algorithms have been developed, each using some
combination of band indices, spatial filters, and corrections in order to accentuate the differences
between hotspot and background pixels (Higgins and Harris 1997; Wright et al., 2004; Pergola et
al., 2004; Ganci et al., 2011; Coppola et al., 2016; Wright, 2016; Pergola et al., 2016; Murphy et
al., 2016; Goubhier et al., 2016; Lombardo 2016; Valade et al., 2019; Genzana et al., 2020;
Castaiflo et al., 2020; Mazzeo et al., 2021; Corradino et al., 2023). In sections 2.3 and 2.4, we take
a closer look at two existing automated hotspot detection algorithms to elucidate their function

and draw comparison with the model we developed.
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Variants of CNNs have been applied to numerous problems in the field of computer vision,
including to identify cancer cells in MRIs (Adoui et al., 2019), facial unlock in cellphones
(Apple Support, 2018), and reverse image search algorithms (Wan et al., 2014). At the start of
this project, we hypothesize that this data-driven approach has the capability to enhance hotspot
detection, and detect subtle signals which might have been missed by other approaches. Indeed, a
CNN has already successfully been applied to volcanic hotspot detection in imagery from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Corradino et al.,
2023). In section 2.4 we provide more detailed information about the theory of CNNs, and also

explain the specific architecture and training process used here.

1.3 Introducing HotLINK
Our final trained model is called HotLINK: the Hotspot Learning and Identification

Network. After training and testing (described in detail in section 2.4), HotLINK is applied to
VIIRS data from 2012-2022 and MODIS data from 2000-2022 for eight target volcanoes:
Augustine Volcano, Mount Cleveland, Bogoslof Island, Okmok Caldera, Pavlof Volcano,
Redoubt Volcano, Shishaldin Volcano, and Mount Veniaminof. The final result of these analyses
provides 22 years of hotspot detections for eight Alaska volcanoes, ten years of which have both
VIIRS and MODIS observations. The three main questions we aim to address with these
analyses are:

1. TIs a CNN approach able to detect hotspots in infrared data better than a thresholding

approach?
2. What volcanic processes can be identified in the time series generated?

3. Are any retrospective hotspot detections precursors to an eruption?

The second chapter of this thesis is a manuscript that is currently in review in the
“Applications of Machine Learning in Volcanology” special issue of the Frontiers in Earth
Sciences journal (https://www.frontiersin.org/research-topics/49896/applications-of-machine-
learning-in-volcanology). The final chapter presents our overall conclusions and addresses the
key questions raised above. We find that while our model showed good performance in the
testing we conducted, and does an excellent job of tracking eruptions, the capability of the model
to distinguish specific volcanic signals and identify precursory warming signals requires further

analysis.


https://www.frontiersin.org/research-topics/49896/applications-of-machine-learning-in-volcanology

Chapter 2: Automatic identification and quantification of volcanic hotspots in Alaska using
HotLINK: the Hotspot Learning and Identification Network

2.1 Abstract

An increase in volcanic thermal emissions can indicate subsurface and surface processes
that precede, or coincide with, volcanic eruptions. Space-borne infrared sensors can detect
hotspots — defined here as localized volcanic thermal emissions — in near-real-time. However,
automatic hotspot detection systems are needed to efficiently analyze the large quantities of data
produced. While hotspots have been automatically detected for over 20 years with simple
thresholding algorithms, new computer vision technologies, such as convolutional neural
networks (CNNs), can enable improved detection capabilities. Here we introduce HotLINK: the
Hotspot Learning and Identification Network, a CNN trained to detect hotspots with a dataset of
~3,800 satellite-based, Visible Infrared Imaging Radiometer Suite (VIIRS) images from Mount
Veniaminof and Mount Cleveland volcanoes, Alaska. We find that our model achieves an
accuracy of 96% when evaluated on ~1,700 unseen images from the same volcanoes, and 95%
when evaluated on ~3,000 images from six additional Alaska volcanoes (Augustine Volcano,
Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin Volcano). In
comparison with an existing threshold-based hotspot detection algorithm, MIROV A (Coppola et
al., 2016), our model detects 22% more hotspots and produces 12% fewer false positives.
Additional testing on ~700 labeled Moderate Resolution Imaging Spectroradiometer (MODIS)
images from Mount Veniaminof demonstrates that our model is applicable to this sensor’s data
as well, achieving an accuracy of 98%. We apply HotLINK to 10 years of VIIRS data and 22
years of MODIS data for the eight aforementioned Alaska volcanoes and calculate the radiative
power of detected hotspots. From these time series we find that HotLINK accurately
characterizes background and eruptive periods, similar to MIROVA, but also detects more subtle
warming signals, potentially related to volcanic unrest. We identify three advantages to our
model over its predecessors: (1) the ability to detect more subtle volcanic hotspots and produce
fewer false positives, especially in daytime images; (2) probabilistic predictions provide a
measure of detection confidence; and (3) its transferability, i.e., the successful application to

multiple sensors and multiple volcanoes without the need for threshold tuning, suggesting the



potential for global application.

2.2 Plain word summary

Volcanoes release heat on their surface, and by monitoring this heat, we can determine if
a volcano 1s erupting or might erupt soon. Heated areas, called hotspots, can be detected by
satellite sensors, which generate images from space in infrared wavelengths. Traditionally,
volcanologists or simple computer programs would identify the hotspots in infrared images.
Now, advanced computer algorithms based on artificial intelligence can accurately identify
complex features in images. We used these algorithms to improve the way we detect volcanic
hotspots. Our approach detects more subtle heat signals than other algorithms, which 1s useful for
detecting different types of volcanic activity, and may contribute to better forecasting of volcanic

eruptions.

2.3 Introduction

Volcanic eruptions pose hazards to human life and society (Loughlin et al., 2015). To
mitigate these hazards, volcano monitoring agencies aim to detect signs of unrest and eruption as
early as possible. Local monitoring stations and remote satellite observations are commonly used
to monitor volcanic unrest (e.g., Dehn et al., 2000; Cameron et al., 2018; Girona et al., 2021).
Here we will focus on one satellite-based approach to monitor thermal unrest: detecting localized
volcanic heat emissions, also referred to as volcanic hotspots. In a single satellite image, hotspots
may be identified as a few pixels of elevated infrared radiance caused by high temperature
volcanic features. Hotspots may be produced by various types of volcanic activity, including lava
flows (Harris et al., 1997; Dehn et al., 2000; Hirn et al., 2009; Blackett, 2013), explosive and
strombolian activity (Harris et al., 1997; Coppola et al., 2012; Coppola et al., 2014), dome
growth (Carter et al., 2007; Ramsey et al., 2012; Coppola et al., 2022), degassing of a hot vent or
fumarole field (Oppenhemier et al 1993; Harris and Stevenson, 1997; Blackett, 2013; Laiolo et
al., 2017), or increased surface meltwater in the case of glaciated volcanoes (Pieri and Abrams
2005; Blackett 2013; Bleick et al., 2013; Reath et al., 2016). Therefore, monitoring changes in

hotspot activity can provide key insights into a volcano’s behavior by indicating the presence of
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thermal volcanic features and characterizing them over time. Due to the utility of these
observations, thermal satellite data are used by volcano observatories as part of their daily
monitoring operations (Dehn et al., 2000; Dehn et al., 2002; Harris et al., 2016; Harris et al.,
2017; Coombs et al., 2018; Cameron et al., 2018; Coppola et al., 2020; Pritchard et al., 2022;
Chevrel et al., 2023). Automating the detection and quantification of volcanic hotspots can
provide near-real time information to volcano observatory scientists to inform decision-making
and provide a mechanism to generate long time series of thermal activity for volcanoes around
the world. Time series observations are useful for determining baseline activity, identifying
periods of volcanic unrest, characterizing the thermal evolution of ongoing eruptions, and
retrospectively studying eruptive histories and processes (Dehn et al., 2002; Wright 2016; Girona
et al., 2021; Chevrel et al., 2023; Coppola et al., 2023).

Surface hotspots will result in increased spectral radiance (Wm™ sr'! um™) in both Mid-
Infrared (MIR, 3 — 5 pm) and Thermal-Infrared (TIR, 5 — 20 um) wavelengths (Harris, 2013).
This behavior is characterized by Planck's Law, which states that as the temperature of a
blackbody increases, the spectrum of energy it emits will increase in radiance, and the peak
radiance will shift to shorter wavelengths. Therefore, a volcanic hotspot can be identified by an
elevated TIR radiance above background and an even greater signal above background in MIR
radiance (e.g., Blackett, 2013; Blackett 2017). For especially hot surfaces (>950 K), the peak
radiance emission is in the shortwave infrared (SWIR, 1.4 — 3 um) part of the spectrum. The
distinct features produced by hotspots in MIR and TIR bands have been exploited to automate
their detection by different algorithms (Higgins and Harris 1997; Wright et al., 2004; Pergola et
al., 2004; Ganci et al., 2011; Coppola et al., 2016; Gouhier et al., 2016; Lombardo 2016; Valade
et al., 2019; Genzano et al., 2020; Castafio et al., 2020; Massimetti et al., 2020; Layana et al.,
2020; Ramsey et al., 2023; Corradino et al., 2023).

One of the first algorithms to automate volcanic hotspot detection, MODVOLC (Wright
et al., 2004), applies a threshold to the Normalized Thermal Index (NTT), constructed from
radiance values of MIR and TIR bands:

MIR —TIR

NIl =R T TIR

2.1)

11



MODVOLC flags nighttime pixels with NTI greater than -0.8, and daytime pixels with
NTI greater than -0.55 as hotspots, because of the large impact of solar reflections and heating on
daytime images (Wright et al., 2004; Wright, 2016). These thresholds were found by manual
analysis of histograms of NTT at 100 locations to minimize false positive detections (Wright et
al., 2004). Another popular approach, the MIROVA algorithm, incorporates a new spectral index
in addition to NTI, and spatially filters both spectral indices to improve hotspot detections
(Coppola et al., 2016, further details on the MIROVA algorithm and its application in this study
can be found in section 2.4). While these and other algorithms define their own band indices,
ratios, spatial filters, and corrections in order to accentuate the differences between hotspot and
background pixels, each of these approaches use thresholding to automate the flagging of hotspot
pixels. The ability of each algorithm to distinguish hotspots from background pixels depends on
how successfully their index is able to separate the two classes, and the accuracy and precision of
the threshold set for that index. MODVOLC and MIROV A have successfully generated decades
long time series of hotspots at volcanoes across the globe, which has allowed for detection and
monitoring of eruptions in near-real time and the study of thermal output from different eruptions
and volcanic systems (Wright, 2016; Coppola et al., 2023). Still, both datasets contain false
detections and missed hotspots, due to the fact that there will inevitably be non-volcanic thermal
signals exceeding the set thresholds, and real volcanic signals lower than the detection
thresholds.

In this paper, we aim to enhance the automatic detection of volcanic hotspots in infrared
satellite data by applying a convolutional neural network (CNN). CNNs are a machine learning
technique commonly employed for image analysis (LeCun et al., 2010). They have been applied
to numerous problems in the field of computer vision, including to identify cancer cells in MRIs
(El Adoui et al., 2019), facial unlock in cellphones (Apple, 2023), and reverse image search
algorithms (Wan et al., 2014). In our approach the use of CNNs can be conceptualized as
identifying hotspots based on what they look like, rather than by thresholding a particular
thermal index. While previous methods employ human-created indices to highlight hotspot
pixels, our approach is data-driven — deriving the spectral and spatial characteristics that define
hotspots from a large labeled dataset of the hotspots themselves. Rather than defining our own

indices, we label a large dataset of hotspots and then allow the model to learn patterns which
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distinguish volcanic hotspots from background pixels. In this way, the CNN mimics the pattern
recognition of a human analyst.

The type of CNN used here is a U-net (Ronneberger et al., 2015). U-nets are a popular
architecture for image segmentation, or tasks in which a prediction is made for each pixel in
order to both detect and locate features of interest. A U-net was successfully applied to volcanic
hotspot detection in data from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), achieving a high accuracy (Corradino et al., 2023). In this study, we apply
a similar method to data from the Visible Infrared Imaging Radiometer Suite (VIIRS) and
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors. Although ASTER
has a finer spatial resolution (90 m in TIR bands, used in Corradino et al., 2023) than VIIRS (375
m) and MODIS (1000 m), we chose to apply this methodology to VIIRS and MODIS data due to
their high acquisition rates and MIR and TIR bands. High acquisition rates result in more
frequent opportunities to detect and track changes in volcanic unrest. At the time of this writing,
VIIRS sensors provide coverage of each Alaska volcano 8 — 15 times per day, while MODIS
sensors provide coverage 1 — 6 times per day. Volcanoes at higher latitudes are imaged more
frequently than those at lower latitudes by the polar-orbiting satellites used here. Detection
frequency will increase in the future with the planned launch of additional VIIRS instruments.
Although MODIS has a coarser spatial resolution than VIIRS, it has a longer operational history
(satellites Terra and Aqua launched in 1999 and 2002, respectively), so it is useful for studying
eruptions prior to the launch of VIIRS (Suomi-National Polar-Orbiting Partnership, SNPP,
launched in 2011, and National Oceanic and Atmospheric Administration 20, NOAA-20,
launched in 2017).

We incorporate data from eight Alaska volcanoes with a wide range of volcanic thermal
signals to develop our model for broad applicability to many volcanic settings (Table 2.1).
Alaska volcanoes have frequent eruptions, but are very remote, necessitating remote sensing as a
primary method for eruption monitoring, forecasting, and response. We use images of Mount
Veniaminof (Alaska) acquired between 2018 — 2019 covering an effusive-explosive eruption,
and images of Mount Cleveland (Alaska) between 2017 — 2018 with coverage of lava dome
growth in order to train our model. The Mount Veniaminof eruption captures high temperature
basaltic lava flows into a large, ice-filled caldera (Loewen et al., 2021). Mount Cleveland activity

consists of explosions, dome growth, and degassing within the summit crater of a stratovolcano
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(Werner et al., 2017). These volcanoes are quite different in terms of morphology, eruption style,
and governing subsurface processes. They also differ in the source of hotspot detections, namely
lava surrounded by ice at Mount Veniaminof, versus hot rock surrounded by cold rock at Mount
Cleveland. These source differences result in hotspots that may differ slightly in intensity and
appearance, leading to a more robust model than it would be if trained on just one of these

volcanoes alone.

Volcano Eruptive styles Eruptions within study period
(2000-2022)
Mount Cleveland Explosive, dome-building 2001, 2005, 2006, 2007, 2009,

2010, 2011, 2013, 2014, 2016,
2017, 2019, 2020

Okmok Caldera Explosive, phreato-magmatic | 2008
Bogoslof Island Phreato-magmatic, explosive, | 2016-2017

dome-building
Shishaldin Volcano Effusive, explosive 2004, 2014-2015, 2019-2020
Pavlof Volcano Explosive, effusive 2007, 2013, 2014, 2016, 2021
Mount Veniaminof Effusive, explosive 2002, 2004, 2005, 2006, 2008,

2009, 2013, 2018, 2021

Augustine Volcano Explosive, dome-building 2006

Redoubt Volcano Explosive, dome-building 2009

Table 2.1: Volcanoes used in this study, in order from west to east. Eruption dates and eruption
styles are composited from irformation available on the Alaska Volcano Observatory website
(www.avo.alaska.edu/).

The other six volcanoes in this study are used for model testing, and were chosen to
comprise a wide range of edifice morphologies, magma compositions, eruption frequencies, and
eruption styles. These include the frequently erupting and typically mafic volcanoes Okmok
Caldera, Shishaldin Volcano and Pavlof Volcano, and the less frequently erupting and typically
more silicic volcanoes Augustine Volcano, Bogoslof Island, and Redoubt Volcano. Importantly,
all have erupted since the launch of the MODIS sensors. Although our development is focused in

Alaska, the volcanoes compiled here range widely in terms of the thermal signatures we expect
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familiar to the authors. Through this work we hope to improve the accuracy of hotspot detections
in infrared satellite data and share our methodology so that it can be applied elsewhere. We aim
to address the questions: (1) is a CNN approach able to detect volcanic hotspots in infrared data
better than a thresholding approach? (2) Can a computer vision model trained on VIIRS data be
reasonably applied to MODIS data with a different resolution? (3) What are the limitations of
HotLINK in terms of generalizability to other volcanoes, and detection limits for VIIRS and
MODIS, night and daytime images? For each detection we calculate radiative power to quantify
the heat emissions over the 22-year study period for the target volcanoes. We then discuss the

capabilities and limitations of this approach for volcano monitoring.

2.4 Methodology

Our model takes as input a VIIRS or MODIS image with MIR and TIR bands, and
outputs the probability that each pixel in a central region of the scene contains a volcanic
hotspot. Once a hotspot is detected we calculate the total volcanic radiative power (RP in Watts)
and area (m?) of the hotspot. The methodology applied here involves the use of four separate
VIIRS datasets to: (1) train the network, (2) validate hyperparameter selection (1.e., tuning
parameters that configure the model and training, as opposed to parameters that are used within
the model to make predictions), (3) fest the model’s accuracy when applied to new volcanoes,
and (4) analyze detections and calculate RP for each volcano over an extended time period. Each
of these four datasets (with names italicized above) is assembled for the VIIRS sensor, and
additional test and analysis datasets are assembled for the MODIS sensor to produce six datasets
in total (Table 2.2).

HotLINK is trained to detect hotspots in VIIRS infrared images on a manually labeled
dataset (VIIRS training) of 3,783 images of Mount Veniaminof and Mount Cleveland volcanoes.
We opt for a manual labeling approach because our goal is to create an automated system that
simulates the manual hotspot identification which is done on a daily basis by duty satellite
scientists at the Alaska Volcano Observatory (AVO). The same training dataset is used to
optimize the thresholds of the MIROV A algorithm (Coppola et al., 2016), and results from both
the optimized implementation of the MIROVA algorithm and HotLINK are compared using the

same validation dataset, which consists of 1,275 images from the same volcanoes. After training
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and validation, the accuracy of the model is estimated by applying it to the VIIRS test dataset,
which is also manually labeled and consists of images from the six other Alaska volcanoes
(Figure 2.1): Okmok Caldera, Shishaldin Volcano, Augustine Volcano, Redoubt Volcano, Pavlof
Volcano, and Bogoslof Island.

Dataset Labeled Volcanoes (dates) Number of images

VIIRS Training By pixel Veniaminof (2018), 3,783
Cleveland (2018-2019)

VIIRS Validation By pixel Veniaminof (2018), 1,275
Cleveland (2018-2019)

VIIRS Test By image Okmok, Shishaldin, 3,280 (includes 66
Augustine, Redoubt, ambiguous images
Pavlof, Bogoslof moved from the
(Mar, Jun, Sep, and Dec VIIRS validation
2017) dataset)

VIIRS Analysis None Veniaminof, Cleveland, 160,497

Okmok, Shishaldin,
Augustine, Redoubt,
Pavlof, Bogoslof (2012-

2022)
MODIS Test By image Veniaminof (2018) 634
(Aqua)
MODIS Analysis None Veniaminof, Cleveland, 385,426
(Aqua and Terra) Okmok, Shishaldin,

Augustine, Redoubt,
Pavlof, Bogoslof (2000-
2022)

Table 2.2: Datasets used in this study.

Although HotLINK is only trained on VIIRS data, we test its applicability to MODIS
data simply by inputting the MODIS test dataset into the VIIRS-trained HotLINK model. Data
pre-processing for MODIS follows all of the same steps as for VIIRS data (see section 2.4.1).
Finally, HotLINK is used to detect volcanic hotspots in 10 years of VIIRS data (VIIRS analysis
dataset) and 22 years of MODIS data (MODIS analysis dataset) from all eight of the previously
mentioned Alaska volcanoes. A subset of the MODIS analysis dataset (MODIS test data,
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manually labeled for Mount Veniaminof) is reviewed and used to estimate the accuracy of the

model when applied to MODIS.

2.4.1 Dataset pre-processing

The pre-processing for all VIIRS and MODIS datasets 1s the same. First, files containing
any of the 8 target volcanoes are downloaded using the Atmosphere Science Investigator-led
Processing System API (sips.ssec.wisc.edu) or NASA Earthdata portal
(search.earthdata.nasa.gov). Next, terrain and atmospherically corrected radiance data (level 1b)
are resampled onto a uniform grid of 64 x 64 pixels centered on the volcano using the nearest
neighbor resampling method and the nadir pixel resolution. For VIIRS this corresponds to an
area of roughly 24 x 24 km? and for MODIS this is an area of 64 x 64 km?. We use VIIRS image
bands 14 (3.55 — 3.93 um, MIR) and I5 (10.5 — 12.4 pm, TIR), and MODIS bands 21 (3.929 —
3.989 um, MIR) and 32 (11.77 — 12.27 pum, TIR). Spectral radiance values have the pixel area
(m?), spectral bandwidth (m), and angular aperture (steradians) factored out of the raw radiative
power measurement (W), which allows for direct comparison between data from the two sensors,
and normalization using the same factors.

Spectral radiance values (L) are normalized to the minimum (Lmin) and maximum (Lmax)
possible radiance values for the VIIRS sensor, as determined by scale and offset factors
(available in the VIIRS level-1b product user guide; NASA, 2018). Physically, Lmin and Lmax
represent the limits of the sensor, and possible retrieval values are always within this range.
Although the true radiance may be outside this range, the sensor will always return at least Lnin
and will saturate at values greater than Lmax (NASA, 2018). The equation used to normalize the

spectral radiance data is as follows:

L—-L,_;
Lyorm = — " (2.2)

Lmax - Lmin

Normalization is important to prevent issues with vanishing or exploding gradients which
would make 1t difficult for the CNN model to converge on a solution (Sola and Sevilla, 1997).
We use the same Lmin and Lmax for both VIIRS and MODIS data despite the sensors having

different minimum and maximum possible spectral radiance values. This is because once the

18


sips.ssec.wisc.edu
search.earthdata.nasa.gov

model has been trained on spectral radiance data normalized to a certain range, it must be applied
to data normalized in the same way. Lastly, since VIIRS data saturates at a lower spectral
radiance than MODIS data, some exceedingly rare MODIS pixels have values higher than one
after normalization (<0.002% of pixels in the MODIS test dataset). To remedy this, values are
capped at a maximum value of one.

The VIIRS training and validation datasets are assembled by collecting all (day and
night) VIIRS data from the SNPP and NOAA-20 satellites with coverage of Mount Veniaminof
for the year of 2018 and NOAA-20 VIIRS data (only) with coverage of Mount Cleveland for
both 2017 and 2018. These volcanoes and time frames were selected to encompass background
non-eruptive behavior, increasing unrest, and eruption. From this dataset, 75% of images are
grouped into the VIIRS training dataset, and the remaining 25% are put into the VIIRS validation
dataset. The validation dataset is smaller because it is only used to ensure the model is not
overfitting, and a representative population is sufficient. Whereas the training dataset is larger
because data in this group is used to actually train the model, and more data results in better
model performance. The grouping between these two datasets 1s done randomly, with the
exception that each image is grouped together with its closest temporal neighbor, since
overpasses of SNPP and NOA A-20 satellites can be within ~45 minutes of each other. This
prevents having one image in the training dataset and a nearly identical image in the validation
dataset.

Images are manually classified into three groups: ‘active’ defined as images containing a
volcanic hotspot, ‘inactive’ or images with no volcanic hotspot, and ‘ambiguous,” where we
cannot conclusively identify whether or not the image contains a volcanic hotspot (Figure 2.2).
Next, all hotspot pixels within the active-labeled images are identified to construct pixel-wise
masks. The ambiguous images are not used for training or validation since we only want images
we can characterize with confidence in those datasets. All ambiguous images from the VIIRS
validation and training datasets are moved into the VIIRS test dataset, which can have images of
any class (66 ambiguous images in total are moved). The final training dataset contains 3,783
images and the final validation dataset contains 1,275 images. In both the VIIRS training and
validation datasets, 45% of images are of Mount Veniaminof, 55% are of Mount Cleveland, and

32% of the total are classified as active.
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expected in the VIIRS test dataset. Although choosing data from eruptive periods would have
resulted in more hotspot detections, we elected to standardize the time period we were using for
all volcanoes. The resulting dataset is a good indicator of the model’s performance when applied
to new volcanoes during typical conditions. Images in the test dataset are also manually
classified as active, inactive, or ambiguous, but not further classified on a pixel-wise basis.
Therefore, the VIIRS test dataset is only used to test the ability of the model to detect images
containing hotspots, not whether it accurately retrieves all of the pixels associated with the
hotspot.

The VIIRS analysis dataset consists of the remaining (unlabeled) data, which are
analyzed by the trained model and used to generate a hotspot detection time series from 2012—
2022 for each of the eight volcanoes in this study. It is the largest VIIRS dataset of our study,
consisting of 160,497 individual images of the volcanoes. Note that the VIIRS analysis dataset
encompasses data that is already a part of the VIIRS training, validation, and test datasets.

We generate additional MODIS test and analysis datasets in order to test the applicability
of our model to MODIS data, compare time series results for VIIRS and MODIS, and extend the
time series of detections back to the year 2000. The MODIS test dataset consists of all 2018
MODIS data from the Aqua satellite of Mount Veniaminof classified by image. This volcano and
time period were chosen for the MODIS test dataset to encompass a known eruption at Mount
Veniaminof that was included in the VIIRS training data. The MODIS analysis dataset consists
of all MODIS data from both Aqua and Terra satellites from 2000 — 2022 with coverage of the

eight target volcanoes.

2.4.2 U-net architecture and training

CNN s utilize 3 x 3 (or other sized) matrices, known as convolution kernels, to search for
specific patterns within an image (LeCun et al., 2010). The kernel is moved across the image and
multiplied with each 3 x 3 subsection to create a new filtered image that shows the degree of
correlation between the features of the kernel and the image. This allows the network to identify
and locate specific spatial patterns within the image. By stacking multiple layers of convolutions,
the network is able to detect increasingly larger and more complex features. At first the network's
kernels are populated randomly, but through an iterative training process the kernels are adapted

to identify spatial patterns optimized for the task at hand.
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Training a CNN involves inputting batches of labeled images into the model. As each
image is passed into the model the probabilistic prediction (initially computed by the randomly
initialized kernels) is compared to the truth value (the class of each pixel), which is known by
prior manual analysis. Then a value, the “loss,” 1s calculated to quantify how well the model
prediction compares to the truth value. This is calculated by the “loss function,” which, in simple
terms, is a quantitative measure of how poorly the model performs — so, a lower loss score
indicates better performance. Importantly, the loss function is differentiable with respect to the
model — meaning that the gradient of the loss function can be calculated for the entire model. The
gradient is very high dimensional, with a value for each trainable parameter of the entire model.
By taking a small step in the direction of the gradient, each parameter of the model is adjusted
slightly in the optimal direction to decrease the loss, which thereby increases the performance.
With each pass over the training dataset, or epoch, each parameter is adjusted slightly, the loss
decreases, and the performance of the model improves. This iterative training process is called
gradient descent, since the model is descending step-by-step down the gradient of the loss
function with the goal of reaching a local minimum. For a more comprehensive explanation of
the training, underlying mathematics, and applications of CNNs, see LeCun et al. (2010).

We chose a U-net CNN architecture, because it allows for predictions to be made in the
same resolution as the input (Figure 2.3; Ronneberger et al., 2015). This allows individual pixels
to be flagged as hotspots or not. The input for our model is normalized radiance data from the
MIR and TIR bands of the VIIRS or MODIS sensor, resampled to uniform resolution and
cropped to 64 x 64 pixels centered on the main vent of the volcano of interest (64 x 64 pixels and
2 channels). The output is the probability that each pixel in a central area of the input belongs to
one of three classes: background, hotspot, or hotspot-adjacent (24 x 24 pixels and 3 classes). The
third class of pixels, hotspot-adjacent, helps the model to train faster; these pixels are considered
background pixels during validation and testing. The output region is smaller than the input, due
to the fact that convolutions of border pixels are undefined, resulting in a smaller image after
each convolution. We consider that a 24 x 24 area of pixels is sufficient for detecting most
hotspots (9 x 9 km? for VIIRS, and 24 x 24 km? for MODIS), but acknowledge that it may miss

distal regions of large lava flows, or eruptions which occur far from the main vent.
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2.4.3 Validation and testing

During the training process, we use the validation dataset to try out many different
versions of the model in order to test which architectures, hyperparameters, etc., result in the best
hotspot predictions. This process also helps to ensure that the model is learning patterns that are
applicable to unseen data and not overfitting. Validation data are also used to tune threshold
parameters applied to the output probability maps, and to compare HotLINK and our optimized
application of the existing threshold-based algorithm, MIROVA (Coppola et al., 2016). To assess
how the trained and validated model performs on new data, we use the test dataset, which is
composed entirely of images from volcanoes the model has not seen during training.

We use two main metrics during validation and testing to evaluate HotLINK and
MIROVA’s performance: accuracy and F1-score. Accuracy is simply the percentage of images

correctly identified by the model. It is defined as:

TP+TN

(2.3)
TP +TN + FP + FN

Accuracy =

where TP, TN, FP, and FN refer to the number of true positives (true hotspot detections),
true negatives (true background detections), false positives (erroneous hotspot detections), and
false negatives (missed volcanic hotspot detections), respectively, generated by the model.
However, accuracy may not be the most appropriate metric for imbalanced datasets, which have
higher proportions of some classes than others. For example, in this study a high percentage of
images do not contain a volcanic hotspot. Therefore, a high accuracy could be achieved simply
by predicting no hotspots in any image. A better metric for evaluating model performance in

cases with imbalanced datasets is the F1-score (Ferri et al., 2009), defined as:

TP
Fl=

2.4
TP+%(FN+FP) (24)

The F1-score rewards true positive results and equally punishes false positives and false
negatives, while true negatives have no impact on the score. Although our model predicts

whether or not each pixel comprises a hotspot, accuracy and F1-scores are calculated on an
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thresholds, thereby showing a particular model's ability to identify hotspots with low FP and FN
rates. The ROC curve comparison of HotLINK and MIROV A is further discussed in section
2.5.2.

2.4.4 MIROVA optimization on the VIIRS training dataset

In order to test the performance of HotLINK, we compare our results to the MIROVA
algorithm, which was originally developed for use with MODIS data (Coppola et al. 2016). The
MIROVA algorithm has already been applied to VIIRS data (Campus et al., 2022, using
moderate resolution bands; Aveni et al., 2023, using the same image bands used here). However,
these studies use the original thresholds of the MIROVA algorithm that were designed for use
with MODIS data. Since VIIRS and MODIS have different spatial resolutions and slightly
different spectral bands, it is possible that the original thresholds could be improved for use with
VIIRS data. To make a fair comparison between MIROVA’s threshold methodology and our
model, we optimize the thresholds of the MIROVA algorithm using a grid search over the same
VIIRS training dataset that 1s used to train HotLINK. This allows for an unbiased comparison,
ensuring that any observed performance differences can be attributed to the inherent capabilities
of each model rather than variations in the data used.

MIROV A employs three thresholds (C1, C2, and K) on multiple indices calculated from
the MIR and TIR spectral bands. These indices are the Normalized Thermal Index (NTT),
Enhanced Thermal Index (ETI), spatially filtered versions of the first two indices called dNTI
and dETI, and the Z-scores of dNTI and dETI. These indices are designed to increase the
contrast between hotspot and background pixels, by combining spectral information at each pixel
(indices NTI and ETI) with spatial information from surrounding pixels (indices dNTI and dETT)
and the scene as a whole (Zantr and Zdetr). A full description of the algorithm and definitions of
indices are presented in Coppola et al. (2016). In brief, pixels are flagged as active if the index
NTI is greater than the threshold K, or if the indices dNTI, dETI, and the Z-scores of both,
surpass the C1 and C2 thresholds, respectively:

(NTI > K) or

((dNTI > C,) or (Zgyr; > C;)) and ((AETI > C;) or (Zgzr; > C,) 2
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In order to optimize MIROVA for use with VIIRS data, we conudct separate grid-
searches for nighttime and daytime data to define new threshold values for C1 and C2, which
minimize the error rate on images within the VIIRS training dataset. The daytime grid search is
conducted between C1 values of 0.0 — 0.29 with a stepsize of 0.01, and C2 values of 2.0 — 11.75
with a stepsize of 0.25. The nighttime samples are more sensitive to the C1 threshold so we use a
finer stepsize of 0.005 and smaller range of 0.0 — 0.095. The C2 range and stepsize remain the
same for the nighttime grid search. At each step the accuracy of MIROVA using specific
thresholds is calculated. The K threshold was not optimized because it was found to have little
effect on the pixel selections made by the algorithm, so it was left as the default value of -0.8 for
nighttime images and -0.6 for daytime images. Default MIROV A values for daytime data are
C1=0.02 and C2=15, and for nighttime data are C1=0.003 and C2=5. With our grid search we
found the highest accuracy using values of C1=0.11 and C2=6.25 for daytime data, and
C1=0.075 and C2=5.25 for nighttime data (see Figures A.3 and A.4 in the appendix for
visualization of both grid searches). The grid searches demonstrate that slight changes to
threshold values can result in slight increases in the performance of MIROVA, at least when

applied to our particular dataset.

2.4.5 Hysteresis thresholding and Radiative Power calculation

Some final considerations for implementing the model are choosing how to threshold
pixels in the output probability map (Figure 2.3), and then calculating useful metrics for each
detection to better track changes in volcanic thermal emissions over time. Although each pixel is
predicted with an individual probability, we recognize that a pixel is more likely to be a hotspot
if it 1s adjacent to a hotspot pixel. For that reason, we implement hysteresis thresholding, in
which a high threshold is used to initialize hotspot detections and a lower threshold 1s used to
continue them. Here, all pixels with a probability greater than 0.5 are classified as hotspots, and
pixels with a probability greater than 0.4 are classified as hotspot pixels if they are adjacent to
other hotspot pixels. The high threshold is set by optimizing the validation dataset for image F1-
score, and then the low threshold is set by optimizing for pixel-wise F1-score. To clarify, these
metrics are chosen because only the high threshold determines which images are active, while

the low threshold determines which pixels within the image are active.
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Once active images are detected and all hotspot pixels within those images are identified,
radiative power (RP) is calculated following the method of Wooster et al., (2003), using the

following formula:

n
RP = C X Apy, X ELW — Lge (2.6)

where RP is the radiative power measured in Watts, C is a constant of proportionality that
is specific to the sensor (sr'pm™, 18.9 for MODIS and 17.34 for VIIRS), Ay, is the area of the
pixel in kilometers squared (1 km? for MODIS, 0.14 km? for VIIRS), 7 is the number of pixels in
the hotspot, Ly;, is the radiance of each hotspot pixel (Wm2sr'um), and Lp is the mean
radiance of pixels directly surrounding the hotspot detection (Wm?sr"'um-!, following the
established methods of Wooster et al., 2003). RP is a measure of how much energy is released
over the entire hotspot, and includes corrections for pixel size, central wavelength, and
background radiance. Since pixel size and central wavelengths are different for VIIRS and

MODIS, using RP allows us to make direct comparisons between the two sensors.

2.5 Results

2.5.1 Validation and test results

Results on the VIIRS validation dataset (Table 2.3) show that the final model works well
when applied to data that has not been seen during training but comes from the same volcanoes.
Specifically, both Mount Veniaminof and Mount Cleveland validation data yield model
accuracies >95% and F1-scores >0.9.

On the VIIRS test dataset, which includes data from the six volcanoes that the model has
not seen previously, HotLINK achieves a relatively low Fl-score of 0.667 (Table 2.3). This
seemingly poor performance is best explained by the lack of true hotspots in the dataset used; out
of the six volcanoes, only Bogoslof Island erupted during the sampling period of the test dataset
(Table 2.2). Since F1-score is mainly a function of true positive detections we achieve a poor

score on most of the volcanoes since there were not many true hotspots to detect. False negative
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and false positive rates on all datasets do not exceed 4%, except for the Augustine Volcano false

negative rate, which is 7.9%.

Dataset Accuracy | Fl-score TN TP FN FP Count
VIIRS Training 0.952 0914 0.698 0.254 0.031 |[0.017 3781
Cleveland 0.962 0.898 0.795 0.167 0.017 | 0.021 | 1551
Veniaminof 0.945 0.920 0.631 0314 0.041 [ 0.014 | 2230
VIIRS Validation | 0.962 0.923 0.731 0.231 0.022 10.016 |1275
Cleveland 0.977 0.933 0.820 0.157 0.011 | 0.011 | 527
Veniaminof 0.951 0.919 0.668 0.282 0.029 | 0.020 | 748
VIIRS Test 0.947 0.667 0.908 0.049 0.024 |[0.019 [2956
Augustine 0914 0.172 0.901 0.009 0.079 | 0.011 | 547
Bogoslof 0.955 0.892 0.765 0.189 0.024 | 0.022 | 460
Okmok 0.956 0.512 0.927 0.024 0.024 | 0.026 | 468
Pavlof 0.974 0.723 0.936 0.037 0.008 | 0.019 | 483
Redoubt 0.919 0.608 0.940 0.040 0.002 | 0.019 ] 530
Shishaldin 0.979 0.444 0.970 0.009 0.002 | 0.019 | 468
MODIS Test 0.981 0.954 0.786 0.195 0.019 0.0 646
(Veniaminof)

Table 2.3: HotLINK results on training, validation, and test datasets. Each row shows the
average cf all volcanoes first, and then indented below spec. fic values for each volcano in the
dataset. Note that ambiguous images (195 total) are removed prior to this analysis.

2.5.1 HotLINK results on MODIS test data

The MODIS test dataset consists of all Mount Veniaminof data from the Aqua satellite in
2018, mncluding 634 images in total. HotLINK achieves an accuracy of 98% on the MODIS test
dataset, and an F1-score of 0.95 (Table 2.3). Unexpectedly, this performance is better than the

model performs on VIIRS data. In section 2.6.3 we discuss a possible explanation for this.

2.5.2 HotLINK and adapted MIROVA results on the VIIRS validation dataset

The VIIRS validation dataset is used to compare the results of HotLINK and the
optimized MIROVA algorithm after both models are trained/optimized with the VIIRS training
dataset. On the validation dataset, we find that HotLINK outperforms our implementation of the
MIROVA algorithm in all metrics (Table 2.4). Specifically, HotLINK produces more true

positives (fewer missed detections), and more true negatives (fewer false detections) than the
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MIROV A approach. Both methods score higher on nighttime data than daytime data. The

conditions under which each model performs best is further discussed in section 2.6.4.

Model | Accuracy | Fl-score | Night | Day F1- TN TP FN FP
Fl-score | score

HotLINK [ 0.962 0.923 0.929 0.916 0.731 10.231 |0.022 | 0.016

Adapted 0.921 0.834 0.894 0.765 0.722 [0.198 |0.054 |0.025

MIROVA

algorithm

Table 2.4: Comparison ¢ f HotLINK and the adapted MIROV A algorithm on the VIIRS validation
dataset. Metrics shown are: accuracy, day/night/combined F1-scores, and ratio cf True
Negatives, True Positives, False Negatives, and False Positive detections.

The ROC curve (Figure 2.4) further demonstrates that HotLINK (blue line) outperforms
the MIROVA algorithm implementation (red line) with respect to true and false positives. In this
plot, preferred classifiers have a high true positive rate (TPR) and low false positive rate (FPR).
So better classifiers are those which plot further into the top left corner. These results show that
HotLINK performs better than the overall optimized MIROV A algorithm, as well as all of the
individual indices used by the MIROV A algorithm (thin dashed lines) with respect to TPR and
FPR. This indicates that HotLINK is able to better differentiate hotspot and background pixels in
comparison with individual indices, regardless of threshold selection. This is due to the CNN’s

ability to extract additional spatial information compared to manually tuned spatial filters.

2.5.3 Time series results

After applying HotLINK to the validation and test datasets, we apply HotLINK to the
VIIRS and MODIS analysis datasets. This provides 10 years of VIIRS and 22 years of MODIS
hotspot detections for the eight target Alaska volcanoes. These results can be found in Figure 2.5.
Despite being unlabeled, these results can help provide a qualitative check on the effectiveness
of the model when applied to different volcanoes experiencing background, unrest, or eruptive
behavior. All detections found in this dataset are plotted as time series in Figure 2.5, with the
Alaska Volcano Observatory (AVO) Aviation Color Code as the background color. In this
analysis we use the AVO Aviation Color Code as a proxy for the state of activity of the volcano.
A color code of “green” is used to indicate that a volcano is at a background non-eruptive state,

“yellow” indicates increasing unrest with the possibility of an eruption in the future, “orange”
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indicates that effusive or low-level explosive eruptions are occurring or are expected in the
immediate future, “red” indicates a significant explosive eruption is occurring or imminent, and
“unassigned” (colored as gray in Figures 5 and 7) indicates that there is insufficient ground-
based monitoring data to assign a color code (Guffanti and Miller, 2013). While accuracy metrics
are useful, the time series plots demonstrate the utility of HotLINK in practical applications.
Figure 2.5 illustrates that HotLINK succeeds at detecting eruptions, which are accompanied by
significant increases in the frequency and RP of detected hotspots. This figure also shows
patterns of potential false positive detections during non-eruptive periods at all volcanoes, which
are discussed in the following paragraphs.

Mount Cleveland erupts frequently, as indicated by many periods of orange color code in
the timeline (Figure 2.5), which represent lava dome eruptions and other elevated activity (e.g.,
Werner et al., 2017). The Mount Cleveland time series shows numerous hotspot detections,
which are much more frequent during periods of orange color code compared to when the color
code 1s unassigned.

Okmok Caldera had only one eruption during our analysis period, in 2008. Only MODIS
data 1s available for this eruption, from which there was one nighttime and three daytime
detections during the eruptive period all with RP values >5 MW. Steady detections occur in
VIIRS night and daytime data at Okmok Caldera, which we infer may be due to the presence of
lakes within the caldera.

At Bogoslof Island we see a strong seasonal trend, in which VIIRS daytime detections
and associated RP mcrease in the summer and decrease during winter. These seasonal trends are
observable both before and after the 2016 — 2017 eruption, but are stronger post-eruption. The
2017 Bogoslof Island eruption is captured well, with VIIRS nighttime detections producing
higher RP values than at any other time.

At Shishaldin Volcano, extended eruption periods from 2014 — 2016 and 2019 — 2020 are
tracked well by HotLINK detections. The onset of these eruptions are accompanied by
significant increases in the rate and RP of detections, and the end of eruptions are accompanied

by a return to background values.
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Pavlof Volcano eruptions are detected well by the HotLINK system, with RP values
during eruptive episodes significantly higher than during non-eruptive periods. The 2007
eruption is captured well in MODIS data, and subsequent eruptions are captured well in both
VIIRS and MODIS data.

At Mount Veniaminof there have been multiple eruptions that are detected by HotLINK,
but there 1s also a high rate of background detections, which could either be indicative of
background heat output or potentially the emissivity and thermal mertia differences between the
active cone and surrounding glacier. In section 2.6.4 we further discuss the nature of these
signals.

Augustine Volcano had one observed eruption in 2006. Augustine Volcano has
infrequent VIIRS nighttime detections, but does show a seasonal signal with increased VIIRS
daytime detections during winter and increased MODIS daytime detections during summer.

Redoubt Volcano also had only one eruption during our analysis period, in 2009, which
was detected well in MODIS data. Since then, no anomalous thermal activity has been detected
but there have been frequent hotspot detections in VIIRS nighttime and daytime data, which may

be attributed to localized persistent degassing and snow melt on the 2009 lava dome.

2.6 Discussion

In this section we discuss the time series results at all volcanoes to investigate the
strengths and weaknesses of our model. We also discuss the probabilistic output of HotLINK,
and our finding that probabilities are well calibrated. Next, we compare VIIRS and MODIS
applications of HotLINK, and estimate detection limits for each sensor. Finally, we advance our
comparison of HotLINK and the threshold-based MIROV A algorithm by looking at a case study

of the Mount Veniaminof time series.

2.6.1 Analysis of time series results from all volcanoes

Based on the time series of detections at all volcanoes (Figure 2.5), we find that (1) the
HotLINK model, as currently trained, works well for many, but not all volcano
morphologies/settings, (2) the VIIRS sensor has a lower detection limit than MODIS due to a

finer spatial resolution, which also results in a slightly higher false positive rate for VIIRS, and
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(3) the RP and relative frequency of daytime and nighttime detections reveals distinct periods in
the eruptive chronologies at many volcanoes, which can be used to further discern true and false
detections. We discuss how we can discern true and false hotspot detections during non-eruptive
periods at volcanoes, why false positive detections appear more often in some volcanoes during
certain times of the day and year than others, and how results can be further filtered to remove
many of the false detections.

Although HotLINK has a lower false positive rate than MIROV A in the validation
dataset (Table 2.4), in the analysis dataset we still see nearly continuous hotspot detections at all
volcanoes even between eruptive periods (Figure 2.5). Even though HotLINK makes many
detections when volcanoes are at “green,” or a background state (e.g. Okmok Caldera 2012-
2022), that does not mean that all of those detections are false positives as it 1s common for many
volcanoes to be persistently degassing and producing heat at the surface even in absence of an
eruption. In this case, increases in the rate and RP of detections, rather than the detection of a
single hotspot, may indicate volcanic unrest or eruption. However, as testing shows (Table 2.3),
we expect HotLINK to have a false positive rate ~2%, such that some of the detections during
background periods are likely not true volcanic hotspots.

In our analysis of Figure 2.5, we expect true volcanic hotspot detections to be those
which are spaced closely together in time and at higher RP than other detections observed during
periods with no eruptive activity. At all volcanoes, likely false positives seem to occur in VIIRS
daytime images with RP in the range of ~1 — 10 MW, and in VIIRS nighttime images with RP
~0 — 0.5 MW. We determine that most detections with RP above these thresholds are true
positives, but that does not preclude the possibility of true (but weak) volcanic hotspot detections
within those ranges.

At some volcanoes (Bogoslof Island and Augustine Volcano) there are notable seasonal
variations in the number of detections and the RP of those detections. At these volcanoes we
believe the source of these detections is primarily from diurnal effects on land/water boundaries.
For example, both Bogoslof Island and Augustine Volcano are island volcanoes, which means
that during the day the land surface regularly heats up more than the surrounding ocean, creating
a temperature difference that is visible in infrared images and to our model looks like a volcanic
hotspot. Since Bogoslof Island is ~1.5 km in diameter while Augustine Island is ~12 km in

diameter, Bogoslof Island tends to appear more like a hotspot in daytime VIIRS data while
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Augustine Volcano Island regularly is identified as a hotspot in daytime, summer, MODIS data
(Figure 2.5). Similarly, clouds frequently develop during the daytime on land, creating localized
solar reflections.

A similar effect occurs at volcanoes that have crater lakes/lagoons (e.g., Okmok Caldera
and Bogoslof Island). Since water has a higher thermal inertia than land, it preserves solar heat
longer into the night than land and is commonly warmer than land at night, particularly when the
land is snow-covered. Volcanic lakes are commonly connected to hydrothermal systems and
increasing lake temperature can be linked to volcanic activity (Hurst et al., 1991; Rouwet et al.,
2014). However, increasing lake temperatures due to volcanic thermal input are difficult to
distinguish from increasing temperatures due to diurnal patterns. With that in mind, a hotspot
detection of a lake is not necessarily indicative of increased volcanic or hydrothermal activity.
By looking at trends in detections and RP over time, however, HotLINK may have the capability
to characterize background lake temperatures and thus detect deviations above background. In
our data we did find clear examples of diurnal and seasonal cycles in hotspot detections at
Okmok Caldera and Bogoslof Island. However, in neither case did we observe clear deviations in
the background radiative power that might have been caused by increased volcanic activity.
Example images of false detections at Okmok Caldera and Bogoslof Island and comparison with
high resolution true color imagery are available in the supplementary materials (Figures A.5 and
A.6). Other common effects producing non-volcanic hotspot detections are snow melting off
rocky areas that then become solar-heated (Mount Veniaminof), and clouds or volcanic plumes
reflecting solar radiation.

While these non-volcanic sources of apparent hotspots are considered in our study to be
false-positives, they highlight the capability of HotLINK to detect subtle warming signals that
could be successfully applied to other research problems. Fundamentally there will always be a
tradeoff between the sensitivity of the method to detect real volcanic hotspots, and the number of
false positives produced. With this in mind, there are simple ways to minimize the occurrence of
the false positives in the dataset through filtering. One easy approach is to only use the nighttime
data, which 1s much less susceptible to false positives, especially those occurring on exposed
rocks surrounded by snow and ice fields and solar reflection off clouds or plumes. Another way
1s to set a specific probabilistic threshold. In Figure 2.5, we calculated radiative power for all

images containing any pixels whose probability exceeds 0.5. However, this probability could be
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adjusted for different contexts. For example, if conducting a long-term historical analysis, it may
be better to set a high confidence threshold and remove as many false positives as possible.
Conversely, for near-real-time monitoring it may be important to incorporate as many detections
as possible, even if a greater percentage of them might be false.

To illustrate the effects of further filtering the data, we look at time series from Bogoslof
Island, Okmok Caldera, Redoubt Volcano, and Augustine Volcanoes, each of which only had
one eruption during the time period of study. At all four of these volcanoes combined there are
6,725 total detections made out of 291,283 total images analyzed (Figure 2.5). These statistics
yield a combined detection rate of 2.3% (>97% of images are non-detections). However, if we
use only night time data and set a probabilistic threshold of 0.75 at the same volcanoes,
HotLINK detects 2,661 hotspots out of 168,400 total images, which is a detection rate of 1.6%.
So, with a higher threshold and only using nighttime images HotLINK removes >98% of images
as non-detections. These statistics also help us estimate an upper bound on the false positive rate
of HotLINK at around 2%, which is similar to what we calculated earlier with the VIIRS test
dataset. For comparison to detection rates during eruptions see section 2.7.3 in which detection

rates of VIIRS and MODIS sensors at Mount Veniaminof during eruptive periods are discussed.

2.6.2 Analysis of HotLINK probability estimates

In order to use probabilistic predictions from HotLINK for filtering hotspot detections, or
for future incorporation into forecasting methods, we must verify that the probabilistic
predictions of the model are meaningful. This 1s especially relevant since modern neural
networks have shown a tendency to be overconfident (Guo et al., 2017). Although the model
outputs a probability prediction for each pixel in the image, we are most interested in whether the
image contains a hotspot at all. Therefore, for the purposes of this analysis we refer to ‘image
probability’ as the highest probability of all pixels in the image, since it only takes one hotspot
pixel for an image to be classified as active. We evaluate our probability outputs using a
reliability diagram, adapted from Hamill (1997; Figure 2.6A).

For image probabilities to be well calibrated, we want the accuracy of a thresholded
prediction to scale with its probability (Hamill, 1997). For example, if a well-calibrated model
predicts five images to contain hotspots at a probability of 80%, four of the images would

contain hotspots while one would not. While this may seem counterintuitive, we want some
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be predicted at intermediate probabilities than images labeled as inactive or active. This finding
supports the idea that CNNs mimic the visual learning of human experts. It also provides more
confidence in the quality of probabilistic predictions, since images that appear ambiguous to

analysts are likely to be predicted at intermediate probabilities by the network.

2.6.3 Comparison and detection limits of MODIS and VIIRS data

We speculate that the higher accuracy of HotLINK on the MODIS test dataset relative to
the VIIRS test and validation datasets is due to the larger pixel size of MODIS preventing small
hotspots from being identified by either HotLINK or manual analysis, resulting in an increased
number of true negatives for MODIS compared to VIIRS. Similarly, the larger pixel size blurs
out smaller scale background variance that is visible in VIIRS data, such that MODIS has a
lower false positive rate than VIIRS and a higher F1-score. The larger pixel size of MODIS data
results in fewer detections overall than VIIRS.

HotLINK shows a slightly better accuracy on MODIS data than on VIIRS because the
MODIS data contains a greater proportion of true negatives and a smaller proportion of false
positives. Despite this, the VIIRS data has a higher true positive rate and is able to see smaller
and weaker hotspots. To further support this conclusion we compare VIIRS and MODIS
detections during three eruptive events at Mount Veniaminof from the analyzed datasets. From
these eruptions we also attempt to quantify a night and daytime detection limit for HotLINK
when applied to VIIRS and MODIS data.

Mount Veniaminof had three eruptions between 2012 — 2022, the time period when both
VIIRS and MODIS data are available. These eruptions were effusive-explosive in nature,
characterized by lava effusion into and within the intra-caldera glacier, and sporadic ash
emissions (Waythomas et al., 2021, 2023; Loewen et al., 2021). Start and end dates for these
eruptions are taken from Loewen et al. (2021). During these eruptive periods, both VIIRS and
MODIS agree well on RP estimates in our analysis. For the 2013 eruption (June 13 — Oct 17),
both MODIS and VIIRS retrieved an average RP of 27.8 MW. During the 2018 eruption (Sep 4
— Dec 27) MODIS retrieved an average of 27.6 MW and VIIRS 30.2 MW, and for the 2021
eruption (Feb 28 — Apr 21) MODIS retrieved an average of 6.0 MW and VIIRS 5.0 MW (Figure
2.7).
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Although the average RP retrieved by both sensors is comparable, the VIIRS sensor had a
much higher rate of detections during the same eruptive periods. Across all three eruptions,
VIIRS had 1,553 detections out of 2,874 total images, for an active percentage of 54%.
Meanwhile MODIS had 536 detections out of 1,902 total images, for an active percentage of
28%. We hypothesize VIIRS had a greater active percentage because it was able to capture
significantly weaker signals, due to its finer spatial resolution (0.137 km? compared to 1 km?
pixel area at nadir). In future work, this hypothesis could be tested through a more robust
analysis of the relative detection rate of VIIRS and MODIS images that are captured at nearly the
same time.

To approximate detection limits for both sensors using HotLINK, we use the 5%
percentile radiative power of all hotspots detected during the 2013, 2018, and 2021 eruptions at
Mount Veniaminof. It is important to acknowledge the possibility of false positives in these data,
constituting approximately 2% of samples according to the labeled VIIRS validation and test
datasets (Table 2.3). To mitigate the impact of false positives on the detection limit estimate, we
opt for a conservative approach by using the Sth percentile, which is more than twice the
estimate for the percentage of false positives in the dataset. This ensures that potential low RP
false positives do not artificially lower the detection limit estimate. Still, our estimate for
detection limit is not the threshold at which signals are missed, but approximates this by
indicating the weakest signals retrieved by HotLINK. This estimate allows us to compare the
relative detection limits between sensors. For VIIRS data, we find the 5th percentile of daytime
detections to be 0.69 MW, and nighttime detections to be 0.26 MW. For MODIS data, we find
the Sth percentile of daytime detections to be 1.4 MW, and nighttime detections to be 0.79 MW.
These results demonstrate that HotLINK is 1.8 — 3 times more sensitive to nighttime
observations than daytime observations, and that HotLINK is 2 — 3x more sensitive when applied
to VIIRS data compared to MODIS. To compare with literature values, the MIROVA algorithm
applied to MODIS data cites a detection limit of ~1 MW 1rrespective of the time of day (Coppola
et al., 2020). This is the first time the authors are aware of a comparison of the detection limits
between MODIS and VIIRS I-bands, although the radiative power between MODIS and VIIRS
M-bands (750 m at nadir) have been previously compared, finding that the VIIRS M-bands are
more sensitive than MODIS bands to thermal signals (L1 et al. 2018, Campus et al., 2022). We

caution that these detection limits are only approximations, since we are only using one volcano
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for this analysis and are not looking at the radiative power of missed detections. Detection limits
could be more rigorously ascertained by comparing the radiative power of true positive and false
negative detections across many volcanoes. Here we only calculated the radiative power for
images that were detected as hotspots by HotLINK and statistical analysis of the RP of false

negative detections was not done.

2.6.4 Analysis of HotLINK and adapted MIROVA on the Veniaminof time series

Table 2.4 shows a higher true positive rate of HotLINK relative to our implementation of
the MIROVA algorithm, indicating a greater sensitivity to smaller and lower temperature
hotspots. Similarly, the high true negative rate of HotLINK relative to this adapted MIROVA
indicates that HotLINK is less susceptible to false positive detections. We can expand on this
analysis by examining the Mount Veniaminof time series from 2017 — 2021 to further compare
results during eruptive and inter-eruptive periods (Figure 2.7). During this time period there were
two eruptions, one in 2018 and one in 2021. The main difference between HotLINK and the
optimized MIROVA detections during this period is that HotLINK detects more hotspots. From
an eruption tracking perspective, the MIROV A algorithm does well as it has a similar detection
rate as HotLINK during eruptions. In contrast, during non-eruptive periods HotLINK makes a
greater number of detections than MIROV A, which may represent volcanic thermal output
associated with volcanic unrest, as well as false positives. Therefore, while both models perform
well for eruption detection and tracking, HotLINK is able to detect weaker signals that may be
relevant for monitoring unrest at Mount Veniaminof.

Figure 2.7 shows an increase in HotLINK detected RP prior to the 2018 eruption, and
more peaks in 2019 and 2020 that are not seen in MIROVA data. These HotLINK detections are
consistent with Alaska Volcano Observatory analyst checks of VIIRS MIR images, where
analysts observed weakly to moderately elevated surface temperatures qualitatively prior to
eruption at Mount Veniaminof, and again during discrete time periods in the summers of 2019
and 2020 (Figure 2.7C,D; Cameron et al., 2023; Orr et al., 2023). We therefore find that the
HotLINK detections are real, capturing weaker, but notable above-background thermal signals as
seen in both the rate and radiative power of detections. These HotLINK results also have the

advantage of providing quantitative information in comparison to the qualitative AVO remote
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larger number of hotspots while also detecting fewer false positive hotspots, (2) the probabilistic
nature of the detections makes the model useful for different monitoring contexts, and (3) the
same model performs well on data from different sensors (MODIS and VIIRS) and different
Alaska volcanoes (with some caveats for volcanoes that are islands or have crater lakes).

The ability to detect more and weaker hotspots opens up the possibility of detecting
precursory as well as eruptive hotspot signals. Specifically, our network detects subtle increases
in volcanic surface temperature from Mount Veniaminof that correspond with both increased
number of analyst detections of thermal signals and elevated seismicity. The capability to detect
subtle signals associated with volcanic unrest, as well as eruptions, may aid in eruption
forecasting efforts. Another advantage of our network is the probabilistic output. This expands
the amount of information available to human analysts and will facilitate incorporation into
statistical eruption forecasting models.

We found that HotLINK was able to detect hotspots in MODIS data with an even higher
accuracy than for VIIRS data. Our model is therefore directly applicable to both VIIRS and
MODIS data and is shown to work well on multiple volcanoes, only producing large errors in
cases with crater lakes or small island volcanoes, which are especially susceptible to seasonal
false detections. These errors could be minimized in the future using a detection threshold that
exceeds the seasonal background signals at relevant volcanoes and/or by filtering out daytime
images.

In conclusion, with a labeled training dataset of less than 4,000 VIIRS images from two
volcanoes we were able to train a model to detect hotspots in both VIIRS and MODIS data that 1s
applicable to many volcanoes. The time series for the eight volcanoes analyzed here captures
volcanic unrest and eruption and thus can provide critical input into data-driven volcano
monitoring and forecasting studies, as well as valuable insight into the magmatic and eruptive
processes occurring in active volcanic systems across Alaska. The model itself is also readily

applicable for near-real-time or historical hotspot detection efforts by volcano observatories.
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Chapter 3: Overall conclusions

The goal of this study was to engineer an automated volcanic hotspot detection model,
based on modern computer vision principles and implementing a convolutional neural network
(CNN) with a U-net architecture. In this, we succeeded; the model was successfully trained,
validated, and tested on VIIRS infrared satellite data, and also tested on an additional MODIS
dataset. Not only did HotLINK perform well on the test datasets, we found that it also
outperformed an earlier automated volcanic hotspot detection approach, an optimized version of
the MIROV A algorithm. We believe the basis of this improvement is in the algorithm we chose;
by applying a CNN we were able to leverage better spatial pattern recognition and so improve
automated detections of volcanic hotspots. To our knowledge, this was the first time these tools
have been applied to the task of hotspot detection using data from VIIRS and MODIS satellite
Sensors.

Secondary goals of this project were to see what type of volcanic signals could be
observed in HotLINK detections and if HotLINK could detect subtle warming signals that may
be potential precursors to eruptions. In pursuit of these goals, we applied HotLINK to over 20
Terabytes of satellite data by processing 22 years of MODIS and 10 years of VIIRS data for
eight target volcanoes in Alaska. In the processed time series data for these eight volcanoes,
there were over 15 discrete eruption periods observed with activity ranging from lava flows
(Mount Veniaminof, Shishaldin Volcano) to lava dome growth (Mount Cleveland, Redoubt
Volcano, Augustine Volcano, Bogoslof Island), lahars (Redoubt Volcano, Augustine Volcano),
ash emissions (observed at all volcanoes), and explosive events (observed at all volcanoes).

We found that HotLINK succeeds at detecting and tracking eruptive activity. In addition
to detecting eruptive signals, there is some evidence of HotLINKs capability to detect lower
temperature, non-eruptive thermal signals (see section 2.6.4). However, while pre-eruptive
detections at Mount Veniaminof in 2018 are likely evidence of new thermal activity (i.e.,
increased surface warming or increased degassing), subtle detections in the summer of 2019 and
2020 could also have been residual heat from the 2018 eruption. Still, these detections
demonstrate that HotLINK is able to detect subtle thermal signals which might be similar in
nature to precursory thermal signals. Although we did not look in great detail at thermal activity

prior to eruptions, our brief analysis did show many instances where HotLINK detected hotspots
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prior to Aviation Color Code changes assigned by the Alaska Volcano Observatory (AVO). A
more robust analysis of precursors would look at the timing and trend of hotspot detections
relative to eruption onset, and comparison to high-resolution imagery and geophysical data to
characterize the type of thermal feature and process. Unfortunately, the exact timing of eruption
onset can sometimes be difficult to constrain for Alaska volcanoes due to their remote locations
and often cloudy weather, and are not always well captured by AVO’s color code changes
(Cameron et al. 2018). In the future, HotLINK could be used to help identify eruption onset,
once the radiative power and/or brightness temperature values of lava spatter, domes, or flows
for the target volcanoes are better characterized.

Future work could also apply HotLINK with complementary spatial and temporal
analysis to distinguish different volcanic features. For example, Kaneko et al. (2002)
distinguished between exogenous and endogenous dome growth by their thermal signatures. One
way this could be approached is through single image and temporal analysis of the radiative
power (RP), brightness temperature (BT), and area of hotspots. For example, we would expect a
lava flow to have a sudden onset of high RP and high BT over a large area, cooling slowly over
time, whereas surface warming of a volcanic vent or geothermal area might have a slow but
steady onset with overall lower RP and BT and cover a much smaller area.

Although for now HotLINK has only been applied retrospectively to historical data, it
can easily be integrated into near-real-time operational analysis to aid with monitoring efforts at
volcano observatories. To this end, we have published a tutorial and the code for the model and
pre-processing pipeline on GitHub (Saunders-Shultz, 2023). Implementation in real time would
require server space to conduct analysis and archive imagery, access real time VIIRS and
MODIS data, an alarm system to output hotspot detections, and a database to store and analyze

the time series of results.
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