
1.  Introduction
Seismometers are the most commonly deployed monitoring sensors on volcanoes (Saccorotti & Lokmer, 2021) 
as exemplified by the seismic networks maintained by the Hawaiian (Nakata & Okubo,  2010) and Alaska 
(Power et al., 2013) volcano observatories. Over the years, development in volcano seismology has given rise to 
several successes in eruption forecasting. Precursory increases in seismicity rate are detected sometimes before 
major eruptions (R. A. White & McCausland, 2019), such as 1991 Pinatubo (Harlow et al., 1996), 2000 Hekla 
(Einarsson, 2018), and 2004 Mount St. Helens (Morgan et  al.,  2008) eruptions. However, seismic anomalies 
prior to eruptions are not always observed, limiting our forecasting ability. For instance, only 30% of recent 
eruptions among Alaskan volcanoes have statistically significant precursory increase in seismicity rate (Pesicek 
et al., 2018). Cameron et al. (2018) also found that between 1989 and 2017, Alaska Volcano Observatory’s (AVO) 
forecasting success rate for certain types of volcanoes for example, those with short repose time (<15 years) or 
small eruption size (Volcanic Explosivity Index of 2 or less) is <20%. Therefore, further advances in our under-
standing of how seismic activity evolves through eruption cycles and relate to various volcanic and magmatic 
processes at different volcanoes are crucial for improving our ability to forecast eruptions (Thelen et al., 2022).
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moment release rates of DLP swarms show a stronger correlation with inflation and their low-frequency 
content is likely a source instead of a path effect. Therefore, we infer that DLPs are directly related to unsteady 
magma movement through a complex pathway. In comparison, repeating events are observed in VTs. Thus, we 
conclude that they represent fault rupture triggered by magma/fluid movement or larger earthquakes.

Plain Language Summary  Volcano eruption forecasting is a challenging task that often requires 
the deciphering of processes underlying observed signs of volcanic unrest. As seismometers become 
common monitoring sensors on volcanoes, the recorded ground motion is valuable for scientists to study 
eruption precursors. Earthquakes are commonly observed and generally inferred to be associated with stress 
perturbations in the shallow crust. However, earthquakes with predominantly lower-frequency energy are 
sometimes observed at depth and their origin is enigmatic. In this paper, we use the existing catalog of 
earthquakes at Akutan Volcano in Alaska between 2005 and 2017 as templates to successfully detect more 
earthquakes before locating them with higher precision. We find that earthquakes at Akutan Volcano tend to 
occur in swarms during times when the ground inflates due to magma accumulation beneath the volcano. Some 
earthquakes have predominantly low-frequency energy which suggests a different source mechanism compared 
to regular earthquakes. Furthermore, the largest events are more strongly correlated with surface inflation. 
Therefore, we conclude that these lower-frequency earthquakes are more directly related to unsteady magma 
movement through a complex pathway compared to regular earthquakes which represent fault rupture triggered 
by magma/fluid movement or larger earthquakes.
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Earthquake occurrence is often clustered in space and time. The most common clustering is mainshock-aftershock 
sequences where the largest magnitude earthquake (i.e., mainshock) is followed by decaying numbers of smaller 
earthquakes nearby (i.e., aftershocks), with the magnitude difference between the mainshock and the largest 
aftershock being ∼1.2 on average (Båth, 1965). Mainshock-aftershock sequences are generally thought to reflect 
a cascade of inter-event stress triggering (Marsan & Lengliné, 2008). Another type of clustering, where a burst of 
seismic activity is not associated with a clear mainshock, is described as swarm activity (Mogi, 1963; Roland & 
McGuire, 2009). Swarms occurring on plate boundary fault systems are often inferred to indicate fluid diffusion 
in heterogeneous structures (Nishikawa & Ide, 2017; Ross & Cochran, 2021) or aseismic slip in low coupling 
regions (Peng et al., 2021; Tan & Marsan, 2020). In comparison, swarms in volcanic or geothermal regions are 
often inferred to be related to migration of magma (Hensch et al., 2008; Power et al., 1998; Wilding et al., 2022) 
or hydrothermal fluids (Shelly et al., 2013), though these interpretations can be non-unique. In addition, while 
the proportion of swarms versus mainshock-aftershock sequences is thought to be higher in volcanic compared 
to non-volcanic regions (Benoit & McNutt, 1996), this is still under debate (Garza-Giron et al., 2018; Traversa & 
Grasso, 2010; Vidale et al., 2006). Therefore, it remains challenging to interpret the physical mechanism under-
lying bursts of seismic activity at volcanic regions.

Earthquakes recorded at volcanic regions that are rich in high-frequency content are usually referred to as 
volcano-tectonic events (VTs). VTs are commonly observed in the crust (e.g., Matoza et al. (2014)) and are consid-
ered to be related to stress perturbation from processes such as shear failures in volcanic edifice (B. A. Chouet & 
Matoza, 2013) or dike propagation (Roman & Cashman, 2006). In contrast, long-period earthquakes (LPs) radiate 
low-frequency (1–5 Hz) energy predominantly and have been detected in the shallow crust down to the upper mantle 
(Melnik et al., 2020; Pitt et al., 2002; R. A. White, 1996). Characterized by emergent phase arrivals and dominant 
low-frequency contents, LPs are difficult to detect using traditional earthquake detection methods (Pitt et al., 2002; 
Shapiro et al., 2017; Wimez & Frank, 2022), though recently, matched-filter detection techniques have proven to 
be quite effective for improving existing LP catalogs (Hotovec-Ellis et al., 2018; Kurihara & Obara, 2021; Kurihara 
et al., 2019). LPs occurring in the shallow crust have been attributed to pressure disruptions in the magmatic and 
hydrothermal systems (B. Chouet, 1992; Lokmer et al., 2008; Matoza & Roman, 2022; Matoza et al., 2015) or slow 
rupture in unconsolidated materials (Bean et al., 2014). In comparison, the inferred source mechanisms of LPs 
occurring from mid-crust to upper mantle (Kurihara & Obara, 2021; Power et al., 2004), known as deep long-period 
events (DLPs), is quite diverse but generally fall into two categories: (a) DLPs are generated near stalled magma 
for example, due to thermal stress from magma cooling (Aso & Tsai, 2014) or volatile release from second boiling 
(Wech et al., 2020); (b) DLPs are generated where there is unsteady fluid movement for example, due to intermittent 
magma flow (Ukawa & Ohtake, 1987), melt degassing (Melnik et al., 2020) or resonance in fluid-filled cracks (B. 
A. Chouet, 1996; B. A. Chouet & Matoza, 2013). Since DLPs could provide a crucial window into the deep plumb-
ing system and are potential eruption precursors (Power et al., 2013; R. A. White, 1996), identifying the specific 
processes underlying DLPs will improve our ability to interpret unrest episodes and forecast eruptions. However, 
while VTs’ utility for eruption forecasting is well-studied (Li et al., 2021; R. White & McCausland, 2016), our 
understanding of how DLP activity might relate differently to inflation and eruption episodes remains limited.

Akutan Volcano is one of the most active volcanoes in the Aleutian Arc with at least 27 eruptive episodes reported 
since 1790 (Lu & Dzurisin, 2014; Miller et  al., 1998). Seismometers have been deployed at Akutan volcano 
since 1996 forming a network of 14 stations at present with which both VTs and DLPs are documented (Power 
et  al.,  2004). In addition, based on both Interferometric Synthetic Aperture Radar (InSAR) (Lu et  al.,  2000; 
Wang et al., 2018) and local Global Positioning System (GPS) (Ji & Herring, 2011; Ji et al., 2017) observations, 
a magma reservoir is inferred to be located at ∼8 km depth with inflation episodes observed every 2–3 years 
between 2002 and 2017. Therefore, Akutan Volcano is a promising site to investigate the characteristics of DLPs 
and VTs and their relationship to magmatic processes. In this paper, we analyze 12 years of continuous waveform 
data at Akutan Volcano to detect and locate VTs and DLPs using cross-correlation-based template matching 
(Gibbons & Ringdal, 2006) and double-difference relocation (Waldhauser & Ellsworth, 2000). We then charac-
terize their spatiotemporal clustering properties and how their activities relate with the inflation episodes, as well 
as investigate the underlying cause for the waveform characteristics of DLPs.

2.  Matched Filter Detection, Magnitude Estimation, and Relocation
Between November 2005 and December 2017, continuous waveform data from 14 stations (Figure 1a) are avail-
able from the Incorporated Research Institution for Seismology Data Management Center (IRIS DMC), whereas 
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between 2002 and 2005, 1-min event waveforms are available (Alaska Volcano Observatory/USGS, 1988). There-
fore, we obtain waveforms of 1,785 events from 2002 to 2017 in the unified catalog of earthquakes produced by 
the AVO (Power et al., 2019) falling in the study region (Figure 1). All waveforms are resampled to 50 Hz and 
bandpass filtered at 1–15 Hz.

We apply EQcorrscan, an open-source python package, to perform matched filter detection (Chamberlain 
et al., 2017). By cross-correlating waveforms of template events with continuous waveforms across the seismic 
network, detections are declared when the sum of normalized cross-correlations (NCC) exceeds a certain thresh-
old. We use 1,510 events recorded by four stations, where the signal-to-noise ratio of P arrival on the vertical 
channel and S arrival on the horizontal channel is above 2, as templates. Template waveforms start from 1 s 
before P/S arrivals and have lengths of 7 s. Each template is used to scan through continuous data from 2005 to 
2017 (Figure S1 in Supporting Information S1). To improve the stability of the detection process, we split the 
continuous waveforms into hourly segments with 30 s overlaps and remove traces with excessive gaps or spikes 
before the template matching process (Warren-Smith et al., 2017).

We use 10 times median absolute deviation (MAD) as a conservative threshold for declaring a detection follow-
ing Hotovec-Ellis et  al.  (2018). Since the matched filter detection method mainly detects events with similar 

Figure 1.  Map view of Akutan Volcano along with earthquake distribution. (a) Topography of Akutan Island with cross 
section from A to B shown in panel (c) Squares represent seismometers used in this study with yellow squares highlighting 
sites with two co-located seismometers. The inset shows the location of Akutan Volcano in Alaska. (b) Frequency index 
(FI) distribution for 2002–2017 earthquakes with dashed line indicating the threshold of −1.6 used to separate different 
earthquake types in our study. Colors represent different labels assigned by analysts, that is, light gray represents VTs while 
purple represents LPs. (c) P wave velocity anomalies across Akutan Volcano (Syracuse et al., 2015) overlain by relocated 
seismicity during 2005–2017. Earthquakes classified as VTs and LPs using FI are represented by black and purple dots 
respectively. Green ellipse marks the deformation source estimated by DeGrandpre et al. (2017).
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waveforms as the templates, our detections can be limited by the available initial catalog of templates. To quan-
tify this effect, we check whether each of our 1,278 templates between 2005 and 2017 is detected from contin-
uous waveforms by any other templates using EQcorrscan. We find that 99.6% of the templates are successfully 
detected by another template which suggests that the method can detect unique events reasonably well. We further 
manually inspect new detections’ waveforms and remove detections with average network NCC that is less than 
0.4 to remove false detections. Finally, for detections with origin time difference of less than 2 s, the ones with the 
lowest NCC values are removed to avoid duplicates (van Wijk et al., 2021). We end up with 2,077 newly-detected 
events.

For newly-detected events, we estimate their local magnitudes as follow:

𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐 ∗ log(𝛼𝛼)� (1)

where α is the amplitude ratio between detected and template events while c is a constant that scales the 
amplitude-magnitude difference and is approximately 1 (Figure S2 in Supporting Information S1) (Schaff, 2008; 
Shelly et al., 2016). We measure α using principal component analysis on 7 s long waveforms and use the median 
α value from paired waveforms across all the available stations. The magnitude of completeness (Mc) is improved 
from ML 0.1 to ML −0.3 (Figure S3 in Supporting Information S1) when estimated using the maximum curvature 
method (Wiemer & Wyss, 2000).

We then relocate both the catalog (Power et  al.,  2019) and newly detected events using the HypoDD 
double-difference method (Waldhauser & Ellsworth, 2000). Newly detected events are assumed to be co-located 
with their templates as initial input to HypoDD. We calculate pick-derived differential arrival times for all event 
pairs within 10 km of each other with at least six observations. For event pairs with distance less than 5 km, we 
derive cross-correlation-derived differential arrival times at each station when NCC value of the waveforms is 
larger than 0.7. The window begins 0.5 s before and continue for 1.5 and 2 s after the P and S-wave arrivals, 
respectively. We successfully relocate 3,144 events using a 3D velocity model from Syracuse et al. (2015) between 
November 2005 and December 2017 (Figure 1c). We then perform bootstrapping by repeatedly relocating 100 
random events using singular value decomposition mode to estimate their location uncertainties (Waldhauser & 
Ellsworth, 2000). On average, we find that the relative horizontal and vertical location uncertainties are 0.75 and 
1.07 km, respectively.

3.  Earthquake Classification
The long-period (LP) and VT events in the AVO catalog have been manually classified (Power et al., 2019), 
but manual classifications are subjective and can be inconsistent (Matoza et al., 2014). Therefore, we reclas-
sify all events systematically using the frequency index (FI) following Buurman and West (2010) and Matoza 
et al. (2014):

𝐹𝐹𝐹𝐹 = log10

(

𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∕𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

)

� (2)

where 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 represent mean spectral amplitudes in the higher and lower frequency bands respectively. 
For each event, we calculate the power spectral density spectrum of its vertical component seismograms with a 
7 s time window starting from 1 s before the P picks, after correcting for instrument response. When P pick is 
unavailable from the catalog, we use the predicted arrival time derived from the event location and 1-D velocity 
model (Power et al., 2019). We first calculate FI at each station using 10–15 Hz and 1–5 Hz as the Aupper and Alower, 
respectively, since we find that these frequency bands allow the FI to most effectively differentiate the VTs and 
DLPs (Figure S4 in Supporting Information S1). The median FI across all available stations is then assigned to 
each event as their final FI value (Matoza et al., 2014).

Figure 1b shows the FI distribution of earthquakes in the AVO catalog, color-coded by their manual labels (Power 
et al., 2019). There is a clear bimodal distribution and near the boundary, manual labels can be inconsistent that 
is, events with the same FI values can have different labels. We select FI of −1.6 as the classification boundary, 
hence 259 events with FI lower than −1.6 are classified as LP while the remaining events are classified as VT. 
Newly detected events are classified into the same category as their templates. Overall, 561 newly detected events 
are LPs which is 2 times more than the number of LP templates. In comparison, 1,516 newly detected events are 
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VTs which is similar to the number of VT templates. The larger number of new detection relative to the available 
templates for LP events may reflect AVO’s current event detection system being less well-optimized for detecting 
LP events.

Combined with earthquake spatial distributions (Figure 1c), we observe that (a) most VTs are located beneath 
the caldera and above the inferred magma reservoir (DeGrandpre et al., 2017); (b) there are some VTs located 
to the west of the caldera that extend down to 30 km depth; (c) most LPs are located below the inferred magma 
reservoir in a region with low P wave velocity (Syracuse et al., 2015). We refer to these LPs below the inferred 
magma reservoir as DLPs.

4.  Earthquake Clusters and Moment Release
We cluster the LP and VT events above Mc separately following Mogi (1963)'s algorithm which takes into account 
(a) the total number of events in a sequence (ET), and (b) the empirical relation between maximum number of 
daily events (Nd) and duration of sequence in days (T):

𝑁𝑁𝑑𝑑 > 2 ×
√

𝑇𝑇� (3)

ET of 5, 10, and 15 are applied separately as the minimum threshold to see which criteria works best. We then 
iterate through T values from 0.5 to 5 to ensure both short- and long-duration clusters can be identified. For each 
cluster, we calculate the distance between each clustered earthquake and the largest one. Events located further 
than three times standard deviation from the largest earthquake are regarded as outliers and removed. To improve 
clustering results, absolute locations are also used for earthquakes that are not successfully relocated (Figure S5 
in Supporting Information S1). After manually checking the magnitude-time evolution of each cluster given by 
different ET thresholds, we decide to focus on clusters identified by ET of 10 in the following discussion while those 
given by ET of 5 and 15 will be used to evaluate the robustness of our conclusions. For ET ≥ 10, 8 DLP and 34 VT 
clusters (Figure 2c) are identified and further classified as swarms when (a) the magnitude difference between the 
largest magnitude event and the following second largest events in one cluster is less than 1, and (b) the occurrence 
time of the largest event in one cluster is near/after the middle of the sequence. We find that all DLP and VT 
clusters fulfill these criteria and are classified as swarms (Figure S6 in Supporting Information S1). There are no 
mainshock-aftershock sequences detected no matter which ET we choose (Figure S7 in Supporting Information S1).

For each swarm, we estimate its cumulative moment release. The seismic moment (M0) of each event is 
calculated  as

𝑀𝑀0 = 101.5∗𝑀𝑀𝑤𝑤+9.105� (4)

where Mw represents an earthquake’s moment magnitude. We obtain each event’s Mw by converting their ML 
following Mw = ML for ML > 3 events (Kanamori & Brodsky, 2004) and Mw = 2/3*ML + 1 for ML ≤ 3 events 
(Munafò et  al.,  2016), which accounts for the expected change in scaling between ML and Mw for smaller 
earthquakes (Deichmann, 2017). Cumulative moment release of a swarm is the sum of M0 for all the involved 
earthquakes.

5.  Discussion
5.1.  Dominant Frequency Content of DLPs

As the VTs and DLPs predominantly are located in different regions (Figure 1c), the difference in their dominant 
frequency content could be a result of differences in wave propagation path with different attenuation effects. 
First, we investigate whether the lower frequency content of DLPs can be a path effect due to the overlying low 
velocity regions (Figure S8a in Supporting Information S1) with the presence of melt or extensive fracturing 
(Clarke et al., 2021; Coté et al., 2010). We calculate the FI values of DLPs recorded at the MTBL station which 
is located ∼50 km west of Akutan Volcano (Figure 1a). We find that their FI values remain low (Figure 3a) and 
similar to the FI values measured using waveforms recorded on the local stations (Figure 1b). In comparison, 
deep VTs located a few kilometers west of the DLP zone recorded on the MTBL station all have higher FI values 
(Figures 3a and 3b) despite having similar travel paths (Figure S8a in Supporting Information S1). Therefore, 
we conclude that the lower frequency content of DLPs at Akutan Volcano is not only a path effect due to the 
overlying structure.
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Subsequently, we investigate whether the lower frequency content of DLPs is a path effect due to attenuation in their 
source region (Figure S8b in Supporting Information S1). In this case, there should not be any VT events in the DLP 
source region. However, while they do not occur in large numbers, we manage to identify ∼60 deep VT events within 
the DLP source region (Figures 3b and 3c, Figure S9 in Supporting Information S1). Time differences between P 
and S arrivals of the deep VTs are similar to those of deep LPs and significantly larger than those of shallow VTs, 
indicating that these deep VTs are not mislocated (Figure 3c, Figure S9 in Supporting Information S1). Hence, the 
lower frequency content of DLPs at Akutan Volcano is unlikely to be only a path effect due to attenuation in their 
source region. Therefore, we conclude that the lower frequency content of DLPs at Akutan Volcano is most proba-
bly a source effect, though we cannot completely rule out the possibility of kilometer-scale structural heterogeneity 
with highly variable attenuation effect around the DLP source region (Figure S8c in Supporting Information S1).

5.2.  How VT and DLP Swarms Relate to Inflation Episodes

Earthquake swarms have been found to sometimes coincide with surface deformation driven by high-pressure 
fluid or magma injection, for example, Green and Neuberg (2006), Ji et al. (2017), and Shelly et al. (2013), or 
aseismic slip propagation, for example, Gualandi et al. (2017) and Yukutake et al. (2022). However, few studies 

Figure 2.  Properties of earthquakes at Akutan Volcano from 2005 to 2017. Event rates (a) and moment release rates (b) of deep long-period earthquakes (DLPs) 
(purple) and volcano-tectonic earthquakes (VTs) (black) during inflation and non-inflation periods. The violin plots show results of Jack-knife test where we leave one 
swarm out and recalculate properties iteratively. The violin widths are scaled by data counts. Cross symbols and squares indicate properties of clustered earthquakes and 
all earthquakes, respectively. (c) Temporal evolution of earthquake depths. Purple and black circles represent DLP and VT swarms, respectively. Gray curve represents 
volume changes of deformation source as calculated by Xue et al. (2020). Shaded areas mark inflation episodes. (d) Cumulative moment release of earthquake swarms. 
Purple and black stars indicate DLP and VT swarms, respectively.
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have quantified how VT and DLP swarms might behave differently over decadal timescales and in relation to 
differently with various magmatic processes. Such an analysis could help us better decipher swarms’ underlying 
physical processes and utility for eruption forecasting. Therefore, we analyze temporal correlations between iden-
tified swarms and surface deformation at Akutan Volcano. Based on GPS measurement from November 2005 
to December 2017, we manually identify four inflation episodes, each lasting 5–14 months (Figures 2c and 2d), 
when the inferred Mogi source exhibits a significant volume increase (Xue et al., 2020). In total, the inflation 
episodes span 39 months out of the 145 months that our study period encompasses.

We find that 3 (73 DLPs) out of the 8 DLP swarms (179 DLPs) and 13 (225 VTs) out of the 34 VT swarms 
(541 VTs) occurred during inflation episodes. This means that the rate of DLP and VT swarms are 0.92 and 
4.00 per year (22.46 DLPs/year and 69.23 VTs/year), respectively during the inflating periods, which is almost 
twice the rate of 0.57 and 2.38 per year (12.00 DLPs/year and 35.77 VTs/year) during the non-inflating periods 
(Figure 2a). This finding is relatively robust, since we find that both DLP and VT swarms rates during inflating 
episodes remain higher than during non-inflating periods even when we do not cluster earthquakes (Figure 2a) or 
use minimum ET of 5 or 15 instead during the clustering process (Figure S10 in Supporting Information S1). We 
also applied Jack-knife test by iteratively recalculating all these statistics after dropping out one cluster at a time 
to evaluate whether our observed trend could be a by-product of overwhelming influence from any individual 
swarm. The Jack-knife test results show the range of event rate for both DLP and VT swarms in inflating periods 
remains higher than non-inflating periods (Figure 2a), indicating that our conclusion is not biased by any individ-
ual swarm. Both DLP and VT occurrences are strongly correlated with magma inflation.

Previous research suggests that cumulative moment release of proximal volcanic earthquake swarms in a single 
swarm can be used as a proxy for intruded magma volume (Kettlety et al., 2022). If this relationship holds for 
Akutan Volcano, swarms occurring during inflation episodes should have larger cumulative moment releases 

Figure 3.  Frequency index analysis on deep volcano-tectonic (VTs) and deep long-period earthquakes (DLPs). (a) Frequency 
index measured at station MTBL (Figure 1a) for DLPs and deep VTs to the west of the caldera, with their spatial boundaries 
outlined by purple and yellow boxes, respectively in panel (b). (b) Seismicity distribution during 2005–2017 are shown by 
gray dots. VT detections within the DLP source region are marked as black trident scatters. Purple, light yellow, and dark 
yellow crosses show locations of DLP, deep VT and shallow VT shown in panel (c); (c) Representative waveforms of DLP 
(purple), deep (light yellow) and shallow (dark yellow) VTs recorded by the same local station at vertical and radial channels. 
Black vertical lines indicate phase arrivals.
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compared to those occurring during non-inflation periods. We find that the two largest DLP swarms in terms of 
cumulative moment releases indeed occurred during an inflation episode (Figure 2d). The third DLP swarm that 
occurred during an inflation episode in 2016 had comparable cumulative moment releases with the two largest 
DLP swarms that occurred during non-inflation periods. In comparison, the largest VT swarms in terms of 
cumulative moment releases do not coincide with inflation episodes (Figure 2d). We also estimate the moment 
release rates of DLP and VT swarms during inflation and non-inflation periods (Figure 2b). We find that the 
moment release rates of DLP swarms during inflation periods is 3.88  ×  10 13  N  ·  m/year, which is 15 times 
larger than 2.26 × 10 12 N  · m/year during non-inflation periods. Comparatively, the moment release rates of 
VT swarms in inflation periods (1.21 × 10 13 N · m/year) is only 17% higher than that in non-inflation periods 
(1.03 × 10 13 N · m/year). This pattern remains consistent when we do not cluster events (Figure 2b), or use ET 
of 5 and 15 instead during the clustering process (Figure S10 in Supporting Information S1). The Jack-knife test 
results also show the same trend (Figure 2b) which means that this conclusion is not biased by any individual 
swarm including when clustering parameter changes (Figure S10 in Supporting Information S1). Therefore, it 
appears that compared to VT swarms, the moment release of DLP swarms is more strongly correlated with 
magma inflation. Interestingly, the two largest DLP swarms occurred during the 2011 inflation period which has 
relatively slower inflation rate than other inflation episodes (Figure 2d). This is similar to observations at Sierra 
Negra Volcano (Bell et al., 2021) and Santorini Volcano (Druitt et al., 2019) where seismic moment release rates 
do not always correlate with inflation rates. Possible explanations include the seismic moment release being only 
a fraction of the moment release of the deformation (Gualandi et al., 2017), and is also affected by factors such as 
the stress state of the region (Pedersen et al., 2007).

5.3.  Physical Process Underlying VT and DLP Swarms

VT swarms are commonly inferred to be related to physical processes like dike propagation (Roman & 
Cashman,  2006), fluid diffusion (Yukutake et  al.,  2011), and aseismic slip (Yukutake et  al.,  2022) based on 
observations of vertical alignment in earthquake distributions (Roman & Cashman, 2006), earthquake migration 
speed that gives reasonable diffusivity/permeability estimates (Yukutake et al., 2011), and detections of repeating 
earthquakes (Yukutake et al., 2022). In comparison, DLP swarms have been associated with magma transport 
based on their low-frequency energy content, non-double-couple source moment tensor (Oikawa et al., 2019), and 
migration path that co-locates with estimated magma movement path (Kurihara et al., 2019) or stalled magma at 
depth based on observations of stationary, repeating DLPs that correlate with gas emissions (Wech et al., 2020). 
At Akutan Volcano, we discover that all the clustered VTs and DLPs are swarms instead of mainshock-aftershock 
sequences with none of them delineating planar structures or showing spatial migration from depth with time 
(Figure 2c, Figure S6 in Supporting Information S1). Such event migrations should have been resolvable since 
half of all identified swarms span at least 5 km spatially. Unlike observations at Mammoth mountains (Power 
et al., 1998), Long Valley caldera (Li et al., 2021), and Fagradalsfjall eruption (Fischer et al., 2022) where migrat-
ing seismicities can be used to track magma movements as dike propagates, the absence of migrating seismicity at 
Akutan Volcano is comparable to swarms detected at Makushin Volcano in 2020 (Lanza et al., 2022). Therefore, 
we conclude that seismic swarms at Akutan are unlikely to represent dike propagation.

Interestingly, VT swarms at Akutan Volcano are mostly located within regions with high Vp (Figure 1c) inter-
preted as regions with low fluid content (Yukutake et al., 2015). However, due to the limited spatial resolution of 
the tomography study (Syracuse et al., 2015), it remains possible that these swarms are triggered by small-scale 
fluid diffusion (Hatch et al., 2020; Igarashi et al., 2003). In addition, we have identified “repeating” events with 
highly similar (NCC > 0.9) waveforms (Figure S11 in Supporting Information S1) within these swarms, though 
we could not verify that their rupture areas indeed overlap. Considering that the VT swarms are more likely to 
occur during inflation episodes with no spatial migration, they might reflect fault asperities that were driven to 
failure due to stress loading from the underlying inflating magma reservoir. However, since many VT swarms, 
including the ones with the largest cumulative moment release, occur during non-inflation periods, they are likely 
also linked to other non-magmatic processes for example, fluid diffusion (Farrell et al., 2009) or triggering by 
nearby or far-field large earthquakes (Peng et al., 2021).

Repeating DLPs are usually interpreted to reflect a repeating, non-destructive source process occurring at the 
same location, such as rapid pressure changes due to magmatic gas passing through cracks at Fuego volcano 
(Brill & Waite,  2019) or resonance of a fixed geometry fluid-filled crack at Mauna Loa Volcano (Okubo & 
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Wolfe, 2008). Previous studies have also attributed volcanic LPs to slow fault ruptures (Bean et al., 2014), which 
are similar to repeating LPs observed in non-volcanic environments such as the Japan subduction zone plate 
interface (Nishikawa et al., 2019). However, out of the ∼600 DLPs at Akutan Volcano, we only find one pair 
with NCC value above 0.9 and these two events have FI of −1.7 which is close to the boundary of −1.6 that we 
used to separate LP and VT events. Therefore, we conclude that DLPs at Akutan Volcano do not reflect either 
a stationary, repeating source process or slow fault ruptures. Instead, since they are clustered as swarms without 
spatial migration, correlated with inflation episodes, located just beneath the inferred magma reservoir, and have 
low-frequency content likely due to source effect, we infer that DLPs at Akutan Volcano are directly related to 
unsteady magma movement through a complex pathway (Kurihara et al., 2019). In this case, the lack of DLP 
swarms during certain inflation episodes (Figure 2b) could reflect aseismic magma movement, that is, magma 
flow that do not radiate detectable seismic energy (Gualandi et al., 2017). DLP swarms occurring outside of 
inflation episodes with smaller cumulative moment release (Figure 2c) could instead represent magma influxes 
that do not generate detectable surface deformation signal for the existing GPS network.

6.  Conclusions
In conclusion, we detect 2,077 new events at Akutan Volcano by applying template matching on continuous data 
from 2005 to 2017. We then systematically classify all events into 2,787 VTs and 767 LPs based on their FI. After 
waveform-based double difference relocation, we find that the VTs and DLPs are primarily distributed above and 
below the inferred magma reservoir respectively. The low-frequency content of DLPs is relatively uniform across 
the seismic network, thus is likely a source instead of only path or site effect. After clustering both VTs and DLPs 
based on their interevent time, distance and magnitude, we find that they both only occur as swarms instead of 
mainshock-aftershock sequences. In addition, while they occur asynchronously with no clear spatial migration, 
both DLP and VT swarms occur preferentially during inflation episodes. However, the largest DLP swarms (in 
terms of cumulative moment release) coincide well with inflation episodes whereas the largest VT swarms occur 
during non-inflation periods. Furthermore, repeating events are only detected in VTs and not in DLPs. Therefore, 
we infer that compared to VT swarms that likely reflect fault slips triggered by magma inflation, fluid diffusion 
or larger earthquakes, DLP swarms are more directly related to unsteady magma movement through a complex 
pathway.

Data Availability Statement
A unified catalog of earthquake hypocenters and magnitudes at Alaska volcanoes during 1989–2018 from Power 
et al. (2019) is used for this research, which is available at https://doi.org/10.3133/sir20195037. Using IRIS Data 
Services, waveforms and related metadata from Alaska Volcano Observatory and Alaska Regional Network can 
be accessed at https://doi.org/10.7914/SN/AK and https://doi.org/10.7914/SN/AV.
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